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Translational Entanglement via Collisions: How Much Quantum Information is Obtainable?
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We study collisions mediated by finite-range potentials as a tool for generating translational entangle-
ment between unbound particles or multipartite systems. The general analysis is applied to one-
dimensional scattering, where resonances and the initial phase-space distribution are shown to determine
the degree of postcollisional entanglement.
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The role of entanglement as the most important resource
for the processing of quantum information (QI) is widely
recognized [1]. In this context, there is growing interest in
entangled states of continuous variables [2–7] and their
resemblance to the position and momentum entangled
Einstein-Podolsky-Rosen (EPR) states [8]. Continuous-
variable entanglement has been analyzed using a finite-
dimensional basis for systems of bound particles [2], or an
infinite, but countable, harmonic-oscillator basis, for field
quadratures [3].

Here we aim at understanding and quantifying the en-
tanglement of the translational degrees of freedom, by
studying a ubiquitous class of processes that have thus
far eluded the attention of the QI community, namely,
binary collisions between unbound particles or multipar-
tite systems. For two systems, initially in a pure, unbound
state, the post-collision (final) entanglement is measurable
by the von Neumann (VN) entropy of either of the systems,
�Sj�f � �tr�j log�j, where �j (j � 1; 2) is the reduced
density matrix of system j. The nonstandard calculation of
�Sj�f for continuous variables requires the solution of the
eigenvalue equation of a continuous density operator. Our
comprehensive investigation of the dependence of �Sj�f on
the collision parameters has revealed the following striking
conclusion: entanglement is maximized near a scattering
resonance, and grows with the phase-space volume of the
initial (uncorrelated) two-system state, up to a limit deter-
mined by the spectral distance between resonances. These
general results may advance the course of continuous-
variable QI processing and its protection from decoher-
ence, e.g., using controlled collisions of cold atoms [5,9] or
slow-light polaritons [10].

Consider two systems, 1 and 2, coupled by a finite-range
interaction. Assuming that the interaction does not affect
the internal states of each system, the initial two-system
unbound state, j�ii, evolves, after the interaction (colli-
sion) has ceased, as [11]

j�ii ! j�fi � �U1�t� 	U2�t�
�Ic:m: 	 S�j�ii; (1)

where Uj is the free-evolution propagator of system j �
1; 2, Ic:m: is the identity operator of the center-of-mass
(c.m.) motion of the two systems, and S is the scattering
matrix for their relative motion. The post-collision single-
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system VN entropy is then obtainable as

�S1�f � tr1��1log2�1�; (2)

�1 � tr2��Ic:m: 	 S�j�iih�ij�Ic:m: 	 S�y
; (3)

where we have used the VN entropy’s invariance under
unitary transformations. The entanglement is a function
solely of the scattering matrix and the initial wave func-
tion. Since the diagonalization of the continuous-variable
reduced density matrix �1, as required to compute �S1�f, is
generally intractable, simplifications and approximations
are imperative.

We first consider two unbound particles of equal mass,
such that their relative momentum is related to their indi-
vidual momenta by krel �

k1�k2

2 . For three-dimensional
(3D) collisions, we shall assume that each momentum state
jkii can scatter onto a discrete, orthonormal set of final
states with momenta fkfgMj�1. The replacement of continu-
ous variables by discrete values of kf and ki implies the
use of momentum wave packets centered around these
values, whose widths are small enough for the S-matrix
elements hkfjSjkii to be constant throughout the wave
packet; a condition that amounts to choosing appropriate
initial and final momentum wave packets, as discussed
below. Let us take the initial two-particle state to be an
entangled superposition

j�ii �
X
i

cijkii 	 j � kii

�
X
i

cijKc:m: � 0i 	 jkrel � kii: (4)

Following the collision, (4) evolves, according to the
superposition principle, into

j�fi �
X
i

X
kf

cihkfjSjkiij � kfi 	 jkfi; (5)

the sum running over krel � kf. The resulting density
matrix j�fih�fj of the system can be traced out to yield
��1�f �

P
kf j

P
ihkfjSjkiij

2jkfihkfj. On the other hand,
the initial entropy of the state (4) is readily seen to be
�
P
ijcij

2log2jcij
2. Hence, to zeroth order in the momen-

tum widths of the initial wave packets, the change �S�0�1 in
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FIG. 1 (color online). (a) Phase-space distribution of
1D-entangled EPR pair with spatial width � in a box of size
�. (b) Probability density as a function of c.m. momentum.
(c) Same, as a function of xrel � x1 � x2.
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the VN entropy of particle 1 as a result of the collision is

�S�0�1 � �
X
kf

��������
X
i

ciSkf;ki

��������
2
log2

���������
X
i

ciSkf;ki

��������
2
�

�
X
i

jcij2log2jcij
2; (6)

where Sk;k0 � hkjSjk0i. In the case c1 � 1, when (4) has
the unentangled (product) form jkii 	 j � kii, (6) reduces
to �S�0�1 � �

P
kf jSkf;ki

j2log2�jSkf;ki
j2�. This result is in

complete correspondence with the classical Boltzmann law
for entropy change in collisions [12], if we identify
jSkf;ki

j2 with the transition probability from an initial to
a final momentum state. By contrast, the interferences of
different scattering channels in (4) for two or more ci � 0,
render �S1 nonclassical.

We now extend our analysis to binary collisions of two
N-partite bosonic systems. The collisional QI (VN en-
tropy) change is determined, for a given multipartite state
j�ii, by those final states that are accessible via appre-
ciable, especially near-resonant, S-matrix elements. This
implies that the postcollisional entanglement is effectively
confined to a finite phase-space volume, whose size is
determined by the convolution of the S-matrix spectrum
with the initial distribution. We can therefore obtain an
upper bound on the QI change in a collision in terms of the
size of the effectively occupied phase-space volume, by
deriving a quantum version of the classical sampling theo-
rem [13]. To that end, we assume that the 2N-partite wave
function j�i is confined to a spatial volume Vx � LxLyLz
and to a momentum volume Vk � �kx�ky�kz, determined
by the post-collision momentum and position uncertain-
ties. The momentum-space distribution hfkig1; fkig2j�i

can be expanded in the jfkig1; fkig2i � jk�1�
1 ; . . . ;k

�1�
N i1 �

jk�2�
1 ; . . . ;k

�2�
N i2 basis as a Fourier series whose Fourier
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coefficients, afnig;fmig
� an1;...;nN;m1;...;mN

, are related to the

spatial wave function �x�r
�1�
1 ; . . . ; r

�1�
N ; r

�2�
1 ; . . . ; r

�2�
N � �

hfrig1; frig2j�i by

afnig;fmig
�

�
2�
Vk

�
3N
�x

�
�
2�n1;x
�kx

;�
2�n1;y
�ky

; . . . ;�
2�mN;z

�kz

�
:

(7)

Since each argument rji (j � 1; 2; i � 1; . . . ; N) in
�x�r

�1�
1 ; . . . ; r

�1�
N ; r

�2�
1 ; . . . ; r

�2�
N � is confined to the finite re-

gion Vx, each ni;k andmi;k (i � 1; . . . ; N) in (7) must satisfy
0 � ���2�ni;j�=��kj�
;���2�mi;j�=��kj�
 � Lj for j �
1; 2; 3 and i � 1; . . . ; N, so there can be at most
��kjLj�=�2�� nonzero nj (and mj) values. Thus, the con-
tinuous 2N-partite system can be effectively described by a
finite set of nonzero coefficients, afnig;fmig

, and the reduced
state space of either of the colliding N-particle systems is
specified by a set of ��VkVx�=�2��3
N of these coefficients.
Since the maximal single-particle entropy in a
d-dimensional space satisfies S � log2d, an upper bound
for the entanglement is then

S1 � S2 � Nlog2

�
VkVx
�2��3

�
: (8)

It is instructive to compare collisionally entangled particles
to an EPR pair [8], consisting of two particles, prepared by
dissociation (half-collision) [4,6,7], which can be approxi-
mated by a confined Gaussian wave packet for the relative
motion, ��r1; r2� � � 2

����
1=2e���r21�r22�=�

2
e���r2�r1�2=�2
,
with �� � (Fig. 1). One can deduce from (8) that the
maximal entanglement for such a state is log2�

�
��, the log of

the squeezing parameter s [4]. It is unclear how large is the
achievable s-value for collisions of unbound particles.

To investigate this, we shall henceforth restrict ourselves
to 1D collisions of two unbound particles with massm. The
effect of the S-matrix on single-particle momentum eigen-
kets is then Sjki � T�k�jki � R�k�j � ki, where T�k� and
R�k� are, respectively, the transmission and reflection co-
efficients of the interaction potential V�xrel�. Using this,
and taking j�ii � j 1i 	 j 2i, where the initial wave
packets j 1i; j 2i are orthogonal, we can simplify (3) in
several steps: Inserting the appropriate identity element
I �

R
dKc:m:dkreljKc:m:; krelihKc:m:; krelj, where Kc:m: �

k1 � k2; krel �
k1�k2

2 , and integrating over Kc:m:; krel, we
obtain �Ic:m: 	Srel�jk1; k2i � T�krel�jKc:m:; kreli�R�krel� �
jKc:m:;�kreli. Now we can rewrite ��1�f in the momentum
basis, ~�AB �

R
dk1dk2dk

0
1dk

0
2jk1; k2ihk1; k2j�Ic:m: 	 Srel��

j 12ih 12j�Ic:m: 	 Srel�yjk01; k
0
2ihk

0
1; k

0
2j, and take the trace

over particle 2, obtaining
~� 1�
Z
dk1dk01dk

�
T
�
k1�k
2

�
 1�k1� 2�k��R

�
k1�k
2

�
 1�k� 2�k1�

	�
T�

�
k01�k
2

�
 �
1�k

0
1� 

�
2�k��R

�

�
k01�k
2

�
 �
1�k� 

�
2�k

0
1�

	
:

(9)
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The cross terms R�T and T�R vanish owing to the assumed
orthogonality of the initial wave packets in momentum
space. We then have

�1 � �T1 � �R1 ; (10)

�T1 �
Z
dk1dk

0
1dkjk1i

� hk01j 1�k1� 
�
1�k

0
1�j 2�k�j

2T
�
k1 � k

2

�
T�

�
k01 � k

2

�
;

(11)

�R1 �
Z
dk1dk

0
1dkjk1i

� hk01j 2�k1� 
�
2�k

0
1�j 1�k�j

2R
�
k1 � k

2

�
R�

�
k01 � k

2

�
:

(12)

Thus, the 1D density operator splits naturally into ‘‘trans-
mitted’’ and ‘‘reflected’’ parts, which are orthogonal in
the sense that �T1�

R
1 � 0. As a result, the set of eigenvalues

of �1 is given by the union of the sets of eigenvalues of
�T1 and �R1 .

In order to understand the near-resonance behavior of
[10–12], we perform a series expansion of �T1 and �R1 to
second order in the momentum width of the wave packets,
%. As a result, the momentum spread �k2 � hk� k0i

2 �
%2 turns the eigenvalues of (10) into

�S�2�1 � �&�2�T log2&
�2�
T � &�2�

R log2&
�2�
R (13)

&�2�
T � jT�k0�j2 �

�k2

4

d2

dk2
jT�k�j2k�k0 (14)

&�2�
R � jR�k0�j

2 �
�k2

4

d2

dk2
jT�k�j2k�k0 : (15)

This analysis, verified by the numerical case study be-
low, shows that initial narrow-width wave packets are
expected to yield double peaks of the entanglement on
both sides of a resonance, where jT�k�j2 � jR�k�j2 � 1

2
and T�k� varies strongly, with a nonzero dip at resonance.
In the limit �k! 0, the entanglement vanishes when
jT�k�j � 1 (at resonance) or when jR�k�j � 1 (both wave
packets are reflected entirely).

The bound (8) may be invoked to estimate �S1 for
appreciable 1D momentum widths, %� �, i.e., when the
initial wave packet width is much larger than that of the
resonance. The post-collision wave function can then be
written as the sum of transmitted and reflected wave pack-
ets, using Eq. (10). Each wave packet is initially confined,
in k-space, to a 1D region of dimensions �k� %. After the
collision they are modulated by the transmission and re-
flection coefficients, the smallest scale of change for both
given by �. Since the smallest scale of change of a function
is the largest scale of change of its Fourier transform, we
can deduce that the emerging wave packets will be con-
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fined in x-space to a box of dimensions �xj �
1
� . Hence,

applying the bound (8), we can deduce that �Sj�max �

log2�
%
�� (j � 1; 2). In fact, the growth saturates as % ex-

ceeds the distance between resonances (in momentum
space).

In order to corroborate the above analytical estimates,
we perform a numerical case study, taking the interaction
potential to be described by a 1D double delta of width a,
V�xrel� � V���xrel � a� � ��xrel � a�
, for which the
transmission and reflection coefficients are known to be

T�k� �
4km

�V �h2e2{ak�2 � �4km� { �h2V�2
; (16)

R�k� � �
�h2V�4{km�1� e4{km� � ��1� e4{km� �h2V


e2{ak�e4{km �h4V2 � �4km� { �h2V�2

:

(17)

The initial wave functions are taken to be two
distant, counterpropagating Gaussians,  1;2�k� �
� 1
�%2�

1=4e���k�k0�2=�2%2�
�{kx0 , with x0 < 0, k0 > 0. Note
that this implies krel0 �

k01�k02
2 � k0. Finding the eigenval-

ues of �T1 (or �R1 ) involves solving an integral equation of
the form , where+& are the eigenvectors and �T�R�1 �k; k0� �
hkj�T�R�1 jk0i is the kernel of �T�R�1 . Examining (11), we note
that �T1 �k; k

0� becomes negligible for jk� k0j � % and
jk0 � k0j � %. Hence, the integral can be approximated
by the finite sum,

P
1
k0��1

�k�T1 �k; k
0�+&�k

0� � &+&�k�.
The problem then reduces to finding the eigenvalues of a
square matrix with entries �k�T�R�1 �k; k0�, where k and k0

range from �k0 � 3 � % to k0 � 3 � % in steps of �k,
which must be much smaller than the scale of change of
both the potential and the wave packet, so as to approxi-
mate the continuous integration faithfully (to within
99:992%). To verify the validity of the approximation,
care is taken to have j�n&n � 1j< 0:0001. Such a small
deviation can result in an error of 0:0013 in the final
calculation of the entropy. The analytical �S1, given by
(13), is compared in Fig. 2 with the numerical results of the
simulation for different %. The agreement is very good.

We note the most interesting features of the numerical
results (Fig. 2): (i) For small initial momentum widths,
such that %� � [i.e., for the last few peaks in Fig. 2
(inset)], the numerical results confirm the analytical pre-
diction (13), whereby the entropy must have a dip at
resonance, jTj2 � 1. On the other hand, �S1 is maximal
at resonance for %� � or greater. (ii) We must control the
spacing of resonances, �k, and their widths, �, in order to
attain �k� %� �, which is the optimal range for large
�S1. Hence, practically unlimited �S1, indicating an ap-
proximate translational EPR state [6], is anticipated for
near-resonant collisions, either if the potential has a single
resonance only (�k very large), or if the resonance width �
is very narrow. (iii) The dependence of �S1 is insensitive to
fluctuations in the initial state and is thus noise resilient.
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FIG. 2. Simulation results for the single-particle change in VN
entropy, �S1 in 1D collisions for the delta potential, as a
function of the relative momentum. Lower dots: for small width
% � 0:1 � �, fitted to the theoretical derivation [Eq. (13)].
Upper dots: large width, % � 0:6� �. The arrows indicate the
resonances of the transmission coefficient, where jTj2 � 1.
Inset: variation of the VN entropy as a function of the wave
packet width, %, for three relative momenta, corresponding to
peaks 2, 3, and 5 of the transmission coefficient.
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In conclusion, we have proposed and studied the for-
mation of continuous-variable entanglement in controlled
collisions between quasifree particles, or quantized collec-
tive excitations, interacting as fictitious particles, e.g.,
impurity-atom collisions with Bose-Einstein condenstates
(BECs) [14], or collisions of slow-light polaritons in gases
or solids [10]. Cold atoms [5] or slow-light polaritons [10],
free to move in 1D, but confined in the remaining 2D by an
optical lattice or a waveguide, as well as small-angle
collisions of fast-particles [4,11], are suitable candidates.
Appropriate ensemble averaging can be used to apply these
results to the description of the transition of large quantum
systems to entropic equilibrium and classicality via binary
collisions. The maximal amount of entanglement entropy
has been shown to scale logarithmically with the position-
momentum uncertainty product (phase-space volume) of
the colliding wave packets, only for large wave packet
widths compared to the resonances’ width, but less than
the distance between resonances. Translational entangle-
ment of unbound particles has been shown to be highly
noise resilient in certain cases. This reflects an essential
aspect of such processes: ‘‘most’’ of their continuous de-
16050
grees of freedom may be redundant, and hence effectively
protect their entanglement against spurious fluctuations.
These results provide, for the first time, guidelines for the
possible use of unbound particles in QI processing of
continuous variables, as well as conditions for the suppres-
sion of decoherence by minimization of the collision-
induced entanglement.
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