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Objective: As�40% of persons with HIV also suffer neurocognitive decline, we sought
to assess metabolic dysfunction in the brains of simian immunodeficiency virus (SIV)-
infected rhesus macaques, an advanced animal model, in structures involved in
cognitive function. We test the hypothesis that SIV-infection produces proton-magnetic
resonance spectroscopic imaging (1H-MRSI)-observed decline in the neuronal marker,
N-acetylaspartate (NAA), and elevations in the glial marker, myo-inositol (mI), and
associated creatine (Cr) and choline (Cho) in these structures.

Design: Pre- and 4–6 weeks post-SIV infection (with CD8þ T-lymphocyte depletion)
was monitored with T2-weighted quantitative MRI and 16�16�4 multivoxel 1H-MRSI
(TE/TR¼33/1400 ms) in the brains of five rhesus macaques.

Methods: Exploiting the high-resolution 1H-MRSI grid, we obtained absolute, cere-
brospinal fluid partial volume-corrected NAA, Cr, Cho and mI concentrations from
centrum semiovale, caudate nucleus, putamen, thalamus and hippocampus regions.

Results: Pre- to post-infection mean Cr increased in the thalamus: 7.2�0.4 to
8.0�0.8 mmol/l (þ11%, P<0.05); mI increased in the centrum semiovale: 5.1�0.8
to 6.6�0.8 mmol/l, caudate: 5.7�0.7 to 7.3�0.5 mmol/l, thalamus: 6.8�0.8 to
8.5�0.8 mmol/l and hippocampus: 7.7�1.2 to 9.9�0.4 mmol/l (þ29%, þ27%,
þ24% and þ29%, all P<0.05). NAA and Cho changes were not significant.

Conclusion: SIV-infection appears to cause brain injury indirectly, through glial
activation, while the deep gray matter structures’ neuronal cell bodies are relatively
spared. Treatment regimens to reduce gliosis may, therefore, prevent neuronal damage
and its associated neurocognitive impairment.
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Introduction

Although HAART has reduced HIV/AIDS-associated
mortality and dementia, �40% of the million-plus
infected in the United States will suffer milder, long-
term forms of HIV-associated neurocognitive disorders
(HAND), which include impairments in memory and
ippincott Williams & Wilkins. Unaut
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executive function that diminish quality-of-life and
productivity [1,2]. Overall HAND risk has increased
among chronically infected older individuals [3],
despite years of HAART [4–6]. Moreover, the
attenuated association between plasma RNA viral load
and cognitive impairment in treated individuals suggests
the underlying pathology may be related to other,
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metabolic alterations in central nervous system (CNS)
areas [7,8].

Indeed, neuroimaging studies using MRI and proton-
magnetic resonance spectroscopy (1H-MRS) have
revealed continued structural and metabolic abnormal-
ities in infected individuals even while their viral loads
were undetectable [5,9–11]. These often occur sub-
cortically in the basal ganglia, thalamus and white matter,
but also in hippocampus, all areas crucial to executive,
cognitive and memory functions, and most (with the
exception of putamen) periventricular in location. These
abnormalities have also been found to correlate with
cognitive deficits [9,12]. Histopathology from seroposi-
tive patient brains has also confirmed that HIV-1
preferentially targets basal ganglia (especially the caudate
nucleus and putamen) [13], thalamus [14], white matter
[15] and hippocampus [16–18].

Although HIVaffects various brain regions differently, its
specific metabolic effects in these CNS structures thought
to underlie cognitive dysfunction(s) remain less well
characterized. As human studies of CNS involvement can
be logistically challenging early on after infection (as most
newly infected are unaware of their status) and studies
during the advanced stages of neurologic complication
can be difficult in a cognitively-impaired group – with
potential opportunistic infections exacerbating morbidity
to mortality – animal model systems are often used.
Simian immunodeficiency virus (SIV)-infected rhesus
macaque, in particular, is a well established model system
mimicking HIV’s development of AIDS, CNS disease,
cognitive and behavioral deficits [19–22]. Both the
traditional and accelerated (using CD8þ T-lymphocyte
depletion) models of study have provided insight into the
nature and dynamics of HIV cerebral injury and both
have shown similar histopathology at the advanced stage
[23–25]. However, past 1H-MRS studies were limited by
low, 1–4 cm3 spatial resolution (relative to the �80 cm3

brain) and single voxels that missed more than 95% of the
brain and that also suffered gray matter, white matter and
cerebrospinal fluid (CSF) partial volume effects, reducing
metabolite quantification performance [26].

We address these issues with three-dimensional multi-
voxel proton-magnetic resonance spectroscopic imaging
(1H-MRSI) at 0.125 cm3 spatial resolution over sub-
stantial, �35% of the macaque brain [27], volume
corrected for CSF partial volume [28]. Using this
technique, we previously found global abnormalities
suggestive of diffuse pathology in five animals [29].
Histopathology, however, has also revealed regional
heterogeneity and variable disease progression, suggesting
different disease mechanisms in various regions and that
some may be more susceptible than others [25,30]. As the
high-spatial resolution 1H-MRSI grid also facilitates post
hoc analyses and irregularly shaped region-of-interest
definition [31], in this study we test the hypothesis that
pyright © Lippincott Williams & Wilkins. Unautho
SIV-infection may lead to: neuronal damage, reflected by
a decrease in the concentration of their N-acetylaspartate
(NAA) marker; and glial activation, marked by increased
myo-inositol (mI), choline (Cho) and creatine (Cr) [32] in
brain regions implicated in memory or cognitive
function: the centrum semiovale, caudate, putamen,
thalamus and hippocampus. We test these hypotheses in
five rhesus macaques, comparing their absolute meta-
bolite levels pre- and several weeks post-infection.
Methods

Nonhuman primates
Five (two females, three males; 5.0–8.6 kg weight) healthy
3–4 year-old rhesus macaques (Macaca mulatta) were
scanned under constant veterinary supervision. Each was
tranquilized with 15–20 mg/kg intramuscular ketamine
hydrochloride and intubated to ensure a patent airway
during the experiment (no mechanical ventilation was
needed). Intravenous injection of 0.4 mg/kg atropine was
used to prevent bradycardia. Continuous infusion of
propofol (0.25 mg/kg per min) was maintained via a
catheter in a saphenous vein. Heart and respiratory rates,
oxygen saturation and end-tidal CO2 were monitored
continuously and a water blanket used to prevent
hypothermia. All were subsequently intravenously infected
with SIVmac251 virus (10 ng SIVp27) and their CD8þ T-
lymphocytes depleted to speed up progression to, and
increase the incidences of, terminal AIDS and SIV
encephalitis [33,34]. The model yields similar CNS
pathology to that of the later, more commonly diagnosed
[35] and increasingly more prevalent [1,36] stages of HIV-
infection in several weeks instead of years. CD8þ depletion
was done with a mouse-human chimeric, monoclonal
(cM-T807) antibody targeted against CD8 at 6, 8 and
12 days post-inoculation [37,38]. Previous histopatho-
logical and 1H-MRS studies comparing the result of
the non-CD8-depleted (‘traditional’) versus this CD8-
depleted (‘accelerated’) model have shown similar findings
at their comparable infection stages [25,33,39]. Two
animals were rescanned 4 weeks and three 6 weeks later.
The protocol was approved by the Harvard Medical School
and Massachusetts General Hospital Institutional Animal
Care and Utilization Committees.

MRI data acquisition
All experiments were done in a 3 T whole-body MR
imager (Magnetom TIM Trio, Siemens AG, Erlangen,
Germany), using its circularly polarized transmit-receive
human knee-coil capable of producing a peak 2 kHz
(45.2 mT) radio-frequency B1 field. To guide the
1H-MRSI volume-of-interest (VOI) and for tissue
segmentation, sagittal and axial T2-weighted turbo spin
echo (TSE) MRI: TE/TR¼16/7430 ms, 140� 140 mm2

field-of-view (FOV), 512� 512 matrix, 24 sagittal slices,
2 mm slice thickness and 40 axial slices, 1.2 mm slice
thickness, were acquired.
rized reproduction of this article is prohibited.
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Multivoxel three-dimensional 1H-MRSI
A 4.0 cm anterior–posterior (AP)� 3.5 cm left–right
(LR)� 2.0 cm inferior–superior (IS)¼ 28 cm3 VOI was
image-guided, as shown in Fig. 1 [40]. The VOI was then
excited using PRESS (TE/TR¼ 33/1440 ms) with
two second-order Hadamard encoded slabs (4 slices)
Copyright © Lippincott Williams & Wilkins. Unaut
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Fig. 1. Top and middle: Sagittal, (a) before and (a0) 4 weeks after
female rhesus macaque head pre- and post-SIV infection showing
CSI grid and two second-order Hadamard slabs, ‘‘1{‘‘ and ‘‘2{‘‘, en
open arrows on (a) and (a0) denote the axial plane level of (b) and (
resolution that facilitates definition of irregularly-shaped brain stru
matrix from the VOI on (b, b0). All spectra represent 0.125 cm3 vox
the metabolite SNRs and spectral resolution, which led to reliab
metabolites.
interleaved along the IS direction every TR. This
approach optimizes signal-to-noise-ratio (SNR) and
spatial coverage [28] and allows a strong, 9 mT/m,
slice-selection gradient to keep the 1.6 ppm chemical shift
displacement from NAA to mI to 0.5 mm, less than 10%
of the slice thickness [41].
horized reproduction of this article is prohibited.
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The slices’ planes were encoded with 16� 16 two-
dimensional chemical shift imaging (CSI) over 8� 8 cm2

(LR�AP) FOV, yielding nominal (0.5 cm)3¼ 0.125 cm3

voxels (0.55� 0.55� 0.5 cm3� 0.15 cm3 given the full-
width at half-maximum (FWHM) of the two-dimen-
sional CSI point spread function [42–44]). The VOI was
defined in the slices’ planes by two 9 ms PRESS 1808
radio-frequency pulses, under 3.3 and 2.9 mT/m
(4.9 kHz bandwidth). The localization grid formed
7� 8 voxels in each of the four slices (Fig. 1) for a
total of 224 in the VOI. The MRSI signal was acquired
for 256 ms with 512 points at� 1 kHz bandwidth. Each
16� 16� 4 scan took 12.5 min and after four averages the
entire procedure was �50 min.

Metabolic quantification
The 1H-MRSI data were processed using in-house
software (Integrated Data Language version 6.3; Research
Systems Inc., Boulder, Colorado, USA). Residual water
signal was removed in the time domain [45]; then the data
were Fourier transformed in the time, AP and LR direc-
tions and Hadamard reconstructed along the IS direction.
Spectra were voxel-shifted to align the CSI grid with the
VOI NAA, then corrected automatically for frequency and
zero-order phase shifts with reference to the NAA peak in
each voxel [40]. Relative levels of the i¼NAA, Cr, Cho,
mI metabolites in the j¼ 1. . .224 VOI voxels of the
k¼ 1. . .5 animals, Sijk-s, were estimated from their peak
areas usingparametric spectral modeling software [46]. The
Sijk-s were scaled into absolute concentrations, Cvivo

ijk ,
relative to a 0.5 L sphere of Cvitro

i ¼ 12.5, 10.0, 3.0 and
7.5 mmol/l NAA, Cr, Cho and mI in water at physiological
ionic strength to properly load the coil:

Cvivo
ijk ¼ Cvitro

i � Sijk

SijR
�V

180�

k

V180�
R

�fi mmol=l; (1)

where SijR is the sphere’s voxels’ metabolites’ signals,
Vjk

1808 and VR
1808 the radio-frequency voltages for a

nonselective 1 ms 1808 inversion pulse on the k-th subject
and sphere, and fi a correction factor for in vivo (Tvivo

1 ,
Tvivo

2 ) and phantom (Tvitro
1 , Tvitro

2 ) relaxation time
differences for metabolite, i:

fi ¼
exp �TE=Tvitro

2

� �

exp �TE=Tvivo
2

� � �
1� exp �TR=Tvitro

1

� �

1� exp �TR=Tvivo
1

� � ; (2)

where 3 T NAA, Cr, Cho and mI Tvivo
1 ¼ 1335, 1263,

1147, 1120 ms and Tvivo
2 ¼ 325, 178, 264, 200 ms were

used for gray matter regions-of-interest (ROI)s; 1154,
1224, 1032, 960 ms and 316, 182, 263, 200 ms for the
white matter ROI [47–49]. Corresponding values for the
phantom were Tvitro

1 ¼ 605, 336, 235, 280 ms and
Tvitro

2 ¼ 483, 288, 200, 233 ms.

Correcting for cerebrospinal fluid partial volume
ROIs may also contain CSF (see Figs. 2 and 3) whose
metabolite concentrations are below the 1H-MRSI
pyright © Lippincott Williams & Wilkins. Unautho
detection threshold [50], leading to metabolite concen-
tration underestimation. To correct for this, we produced
CSF masks from the axial, T2-weighted TSE images using
our in-house FireVoxel segmentation software package
[51] as described previously [29]. Our software then
estimated the CSF fraction, CSFf, within each voxel as
shown in Fig. 2 [26]. Finally, the Cvivo

ijk [from Eq. (1)] in
each ROI voxel was divided by its tissue fraction,
Tf¼ 1�CSFf.

Regional analyses
The centrum semiovale, caudate head, putamen,
thalamus and hippocampus were examined in all animals,
pre- (healthy) and post-SIV infection. Each was outlined
manually as a ROI on the axial MRI, shown in Fig. 3.
Our in-house-written software (Integrated Data
Language version 6.3, Research Systems Inc., Boulder,
Colorado, USA) then ‘zero-filled’ the processed 16� 16
MRSI matrix to 256� 256 and averaged each metab-
olite’s concentrations in all voxels that fell entirely or
partially within the outline. Note that although zero-
filling does not add new information to the data, it can
increase the effective spatial resolution and reduce partial
volume effects [39,40].

Statistical analyses
The temporal change in each metabolite for each ROI
was computed for each animal as the ‘pre-’ minus the
‘post-’ infection level so that a positive change reflected a
decline over time. The five-animal sample size was
insufficient to permit a nonparametric test of whether
there was a change in any metabolite (or NAA/Cr ratio)
in any ROI. As a result, the paired sample t test was used
to assess the temporal change in each metabolite within
each ROI. Significance was tested at the P< 0.05 level
and SAS version 9.0 (SAS Institute, Cary, North Carolina,
USA) was used for all calculations.
Results

An example of the VOI position, size and spectra pre- and
4 weeks post-SIV infection is shown in Fig. 1. Shimming
yielded a consistent voxel FWHM linewidth, determined
by the spectral modeling software, of 5.9� 0.9 Hz
(mean� SD) over the 2240 voxels (224 voxels/scan�
2 scans/animal� 5 animals). The SNRs, estimated as each
metabolite’s peak-height divided by the root-mean-
square of the noise, were: NAA¼ 25� 8, Cr¼ 16� 6,
Cho¼ 10� 3 and mI¼ 10� 4, leading to reliable fits as
reflected by mean voxel Cramer-Rao lower bounds
(CRLBs) below 15%. To optimize the analyses’ reliability,
ROI voxels were included only if their CRLBs were less
than 20% for all four metabolites.

An example of each ROI outline is provided in Fig. 3 for a
female macaque brain at pre-infection (animal #5 on
rized reproduction of this article is prohibited.
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Fig. 2. Left (a, b, c); and middle (a0, b0, c0): Axial T2-weighted MRI showing the 3.5 T 4.0 cm2 in-plane relative location and size of
the VOI (thick white frame), pre- (left) and four weeks post-SIV infection in the same animal. Note the VOI placement
reproducibility and lack of detectable MRI brain lesions and atrophy. Right (a00, b0 0, c0 0): CSF partial volumes (beige) in 1H-MR
spectroscopic slices corresponding to the approximate locations of (a0, b0, c0). Four FireVoxel-generated CSF masks (from the
MRI) that overlap each 0.5 cm thick 1H-MRSI slice (cf. Figure 1) are superimposed over the CSI grid. Each voxel’s metabolite
values are corrected for CSF partial volume with multiplication by a factor, 1/(1-CSFf).
Table 1). Metabolite concentrations for every ROI and
animal, pre- and post-SIV infection, are compiled in
Table 1 and shown as line-plots in Fig. 4. Pre- to post-
infection mean Cr increased 11% in the thalamus; while
mI increased 29, 27, 24 and 29% in the centrum
semiovale, caudate, thalamus and hippocampus (all
P< 0.05). Slight increases at the trend level (P� 0.1)
were also observed for Cr in the caudate (þ17%) and
for mI in the putamen (þ24%). Neither NAA nor
Cho changed significantly. To be consistent with past
1H-MRS studies in this model system we also obtained
the NAA/Cr ratio, which is often used for quantifi-
cation. Pre- to post-infection mean NAA/Cr declined
from 1.02� 0.08 to 0.98� 0.07 in the centrum
semiovale, 0.65� 0.03 to 0.53� 0.07 in the caudate
Copyright © Lippincott Williams & Wilkins. Unaut
and 0.99� 0.12 to 0.87� 0.07 in the thalamus (�4,
�18 and �13%, all P< 0.05).
Discussion

Resurgence of more neurovirulent HIV strains, increased
drug resistance and higher neurotoxicity associated with
prolonged HAART [52,53] underscore the need for
noninvasive laboratory markers of HAND pathology for
monitoring disease progression. Although an earlier study
found global gray matter and white matter 1H-MRSI
abnormalities in the brains of these same animals [29], that
approach was unable to distinguish multifocal from truly
horized reproduction of this article is prohibited.
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Fig. 3. Left: Real part of the pre-SIV infection 1H spectra averages from all voxels fully or partially within the outlined regions-of-
interest (ROI)s (thin black line), superimposed over their fits (thick gray line) for animal #5 in Table 1. Spectra are on the same
frequency and intensity scales. Note the improved ROI SNRs (as compared to the single-voxel spectra in Fig. 1) that lead to good
spectral fits, as reflected by mean CRLBs of <20% for all metabolites in all ROIs examined. Middle: Axial T2-weighted MRI
showing the volume-of-interest (thick white frame), 7 T 8 axial-native CSI grid (thin white lines) and ROIs (yellow outlines):
(a) centrum semiovale, (b) caudate (head) nucleus, (c) putamen, (d) thalamus and (e) hippocampus. Note the relationship
between the spatial resolution of the grid and the sizes of these ROIs. Right: Same as ‘Left’ except taken four weeks post-SIV
infection.
diffuse pathology. Fortunately, the original, high-spatial
resolution 1H-MRSI data facilitates post hoc analyses
of irregularly shaped ROIs [31], as shown in Fig. 3.
Consequently, we examined the structure-specific regional
changes in these same animals pre- and 4–6 weeks post-
infection.

Taken together, the findings of both studies suggest that
SIV-infection may indeed produce multifocal pathology.
First, while global white matter NAA has been shown to
decline [29], no NAA decline is seen here in the centrum
semiovale (cf. Figure 4). Second, although no global gray
matter or white matter mI elevation was seen previously
[29], it is detected here in several individual gray matter
pyright © Lippincott Williams & Wilkins. Unautho
structures and in the centrum semiovale (Table 1 and
Fig. 4). Lastly, despite undetected NAA decline in the
VOI’s deep gray matter structures, histopathology in
other rhesus macaques has shown neuronal dysfunction/
loss in cortical regions outside of our 1H-MRSI VOI
[25,30]. Moreover, immunohistochemistry markers of
astrogliosis and neuronal integrity, glial fibrillary acidic
protein (GFAP), synaptophysin and microtubule-associ-
ated protein 2, along with neuronal counts in animals of
the same cohort have shown evidence of variable disease
activity in frontal and parietal cortices as well as a
pathology gradient in frontal cortex between 4 and
8 weeks post-infection, suggesting greater neurodegen-
eration and gliosis later in the disease [25,30].
rized reproduction of this article is prohibited.
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Table 1. Metabolic data (mean W SD) for each region-of-interest (ROI) of animals #1–5, ‘pre-’ and ‘post-’ SIV infection, for each metabolite
(NAA, Cr, Cho, mI).

ROI Animal #

NAAa Cra Choa mIa

pre- post- pre- post- pre- post- pre- post-

Centrum semiovale 1 5.5 5.6 4.9 5.3 1.0 1.1 4.2 5.3
2 7.0 6.1 7.5 6.8 0.8 0.8 5.1 6.3
3 5.8 6.3 5.3 6.0 1.0 0.9 5.9 6.8
4 5.0 5.8 5.2 6.2 0.9 0.9 4.4 7.5
5 5.1 5.9 5.2 6.3 0.8 0.9 5.7 6.9

Mean� SD 5.7�0.8 6.0�0.3 5.6�1.1 6.1�0.6 0.9�0.1 0.9�0.1 5.1�0.8 6.6�0.8M

Caudate 1 5.5 5.0 9.0 9.3 1.9 2.1 6.0 7.7
2 5.5 4.3 8.7 10.1 1.8 1.8 5.6 7.0
3 4.0 5.5 5.8 9.8 1.8 2.4 5.8 7.0
4 5.6 5.0 8.7 9.5 2.4 1.9 4.7 6.8
5 5.3 5.2 7.9 8.4 2.1 2.1 6.7 7.9

Mean� SD 5.2�0.7 5.0�0.5 8.0�1.3 9.4�0.6 2.0�0.2 2.0�0.2 5.7�0.7 7.3�0.5M

Putamen 1 6.7 7.2 9.4 10.1 1.4 1.6 6.1 6.4
2 6.5 5.3 8.3 7.3 1.1 1.6 5.3 7.0
3 6.2 6.7 9.0 9.6 1.3 1.3 6.2 6.7
4 6.0 5.4 6.9 7.1 1.0 1.1 5.5 8.7
5 6.5 5.9 8.9 8.9 1.3 1.2 5.4 6.5

Mean� SD 6.4�0.3 6.1�0.8 8.5�1.0 8.6�1.3 1.2�0.2 1.3�0.2 5.7�0.4 7.1�1.0
Thalamus 1 7.3 7.3 7.0 7.9 1.9 1.9 7.3 7.9

2 7.9 6.6 6.8 7.4 1.7 1.8 5.9 7.7
3 7.5 7.3 7.7 8.9 1.9 1.9 7.8 8.9
4 6.5 6.8 7.5 8.8 1.6 1.9 6.9 9.5
5 6.5 6.4 7.2 7.0 1.7 1.7 6.2 8.2

Mean� SD 7.2�0.6 6.9�0.4 7.2�0.4 8.0�0.8M 1.8�0.1 1.9�0.1 6.8�0.8 8.5�0.8M

Hippocampus 1 – – – – – – – –
2 6.9 7.8 6.5 9.1 1.0 1.3 6.2 9.8
3 7.7 6.8 7.3 6.4 1.1 0.8 7.3 10.4
4 7.2 6.7 7.1 5.7 1.3 0.7 8.5 10.0
5 8.2 6.1 7.4 5.4 1.3 0.8 8.7 9.4

Mean� SD 7.7�1.0 6.8�0.7 7.1�0.4 6.7�1.7 1.2�0.2 0.9�0.3 7.7�1.2 9.9�0.4M

NAA, N-acetylaspartate; Cr, creatine; Cho, choline; mI, myo-inositol. A ‘-’ indicates data was excluded due to metabolic Cramer-Rao lower
bounds >20%.
aAbsolute average ROI concentration [mmol/g wet weight].
MP<0.05.
Several explanations could account for such regional and
temporal variations: First, various mechanisms may cause
different types of damage in different regions, for
example, those in the basal ganglia, white matter and
parietal cortex [54], as part of a ‘multihit’ hypothesis;
second, damage mechanisms may be similar, but more
aggressive in some regions, for example, in the thalamus,
due to heavier viral loads; and third, there may be a
spatiotemporal dependence, that is, injury begins in one
area (which sustains the most damage) and spreads over
time to other areas perhaps through Wallerian degener-
ation. None of these hypotheses was tested in a previous
1H-MRSI study that examined only global abnormalities
[29], nor with histopathology since it cannot follow-up
the same animal.

Our study demonstrates that 1H-MRSI can identify
structure-specific changes: specifically, we found that
SIV-infection produces increases in mI and Cr, reflecting
glial activation, in the thalamus and likely also in the
caudate, centrum semiovale and hippocampus. Elevated
mI in multiple regions is consistent with previous
neuropathology in this animal model [25,30], showing
Copyright © Lippincott Williams & Wilkins. Unaut
widespread elevations of GFAP and ionized calcium
binding adaptor molecule 1 – an immunohistochemistry
marker of microglial activation – at 4 and 8 weeks post-
infection. Unchanged NAA, however, suggests that the
structures’ neuronal cell bodies may (still) be spared. One
implication of this is that astrocyte and microglial
activation may precede neuropathogenesis, a conclusion
consistent with our previous 1H-MRSI finding of
elevated global mI in the larger (28 cm3) VOI, along
with WM NAA decline (axonal pathology), but no gray
matter NAA (neuronal cell body) change in these same
SIV-infected macaques [29].

An alternative possibility is that neurons may have been
injured earlier [25], but partially recovered because of host
immune activation, suggesting a reversible injury
coincident with monocyte-associated levels of viremia
[55]. It is also noteworthy that although Ratai et al. [25]
reported significant declines in the NAA/Cr ratio in
parietal and frontal cortices that correlated with
histopathological declines in synaptophysin and neuronal
counts, neither NAA nor Cr change by itself was
significant at 4 or 6 weeks post-SIV infection.
horized reproduction of this article is prohibited.
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Fig. 4. Line-plots of the N-acetylaspartate (NAA), creatine (Cr), choline (Cho) and myo-inositol (mI) concentration changes
from ‘Pre-’ to ‘Post-’ SIV infection scans in every region-of-interest for each of the five animals (#1–5, corresponding to Table 1).
Note the statistically significant increase in thalamus Cr, as well as significant elevations in mI for centrum semiovale, caudate,
thalamus and hippocampus (denoted by open arrows).
It is also worth mentioning that metabolite ratios (often to
the Cr level) are a common approach to metabolic
quantification. Ratios cancel unknown multiplicative
factors, for example, static, B0, and radio-frequency, B1,
field inhomogeneities, instrumental gain, scanner and
localization method differences, as well as CSF partial
volume, at the cost of noise propagation from the
numerator and denominator [56]. Indeed, consistent with
previous reports [25,55], our data also yields significant
NAA/Cr declines in the centrum semiovale, caudate
and thalamus. These reflect coherent decreases in the
NAA simultaneous with increased Cr concentrations, as
shown in Fig. 4, that are each not quite statistically
significant in and of itself. The previously reported
global white matter NAA decline [29], together with
the centrum semiovale NAA/Cr decline here, may
suggest diffuse axonal pathology imparted by Wallerian
degeneration [57,58], leading to direct injury of cortical
cell bodies that are outside of our 1H-MRSI VOI (see
limitation below).

Admittedly, this study is also subject to several limitations:
First, due to the proximity of frontal regions to air-tissue
interfaces, for example, the paranasal sinuses, which cause
pyright © Lippincott Williams & Wilkins. Unautho
severe B0 field inhomogeneity [59], our VOI excluded
most of the frontal lobes, an area known to be affected in
HAND. Second, to avoid lipid contamination our VOI
was limited in cortical coverage to midline cortex,
missing�85–90% of the cortical gray matter. Third, cost
constraints limited follow-up of these animals, which had
been participating in a longitudinal antiretroviral study, to
just five animals, all of which were accelerated models to
speed disease progression to terminal AIDS and SIV
encephalitis in several months versus years with the
traditional SIV model. It is noteworthy that the traditional
model may be preferred for its proven ability to
recapitulate HIV cerebral pathology, but this requires
prohibitively long wait periods. Moreover, the limited
number of animals restricted the statistical power,
reflected by coefficients of variation (SD/mean) for the
ROIs’ metabolite concentrations of 9, 12, 12 and 13% for
the NAA, Cr, Cho and mI, respectively. Logistics
notwithstanding, future studies might benefit from more
animals scanned later at multiple timepoints to reveal how
the disease evolves into its terminal phase.

SIV-infection at this stage appears to cause glial activation,
while neuronal cell bodies in the deep gray matter
rized reproduction of this article is prohibited.



Structure-specific 1H-MRSI SIV activity Wu et al. 2527
structures remain relatively spared, or, alternatively, may
have already recovered. Treatment regimens to reduce
gliosis, therefore, may prove beneficial in preventing
downstream neurodegeneration and perhaps ward off
neurocognitive impairments. These results also suggest
possible relationships between particular brain regions
and progressive brain injury, a link that if substantiated
would support the hypothesis that more vulnerable
regions are ‘hit’ first, or more aggressively, and disease
spreads to other areas only subsequently. Such regional
disease heterogeneity and spatiotemporal escalation could
be monitored with 1H-MRSI as a noninvasive, non-
destructive alternative to histopathology. Provided that
animal testing demonstrates safety, future HIV treatment
studies might benefit from anti-inflammatory regimens
geared towards reducing gliosis as a strategy against
HAND.
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