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1. Introduction

Nuclear Magnetic Resonance (NMR, also known as Magnetic
Resonance Spectroscopy; MRS, in an in-vivo setting) enables one
to probe the structure and dynamics of matter in a noninvasive
manner. It allows one to study molecular properties and interac-
tions with unparalleled detail [1–3], and it can be combined with
localization techniques to perform Magnetic Resonance Imaging
(MRI), i.e., to obtain spatial distribution maps of these and other
properties without ever having to ‘‘see” the sample [4–6].

The introduction of ever more advanced theories and of more
sophisticated concepts has enabled the constant development of
increasingly elaborate methods in both NMR and MRI. Also in-
volved in this 60+-years saga have been constant improvements
in the hardware and software used to collect the MR data. These
developments began in the early days of continuous wave NMR
and have continued unabated ever since. In this review we discuss
one such development, which departs from the usual time and fre-
quency domain experiments, and relies on spatial encoding; that
is, on the selective excitation of spins situated at different positions
in the sample in a discriminative manner, and on the subsequent
acquisition in the presence of spatial gradients. New manipulations
will be examined, and it will be shown how they can be used
advantageously. In NMR spectroscopy, such excitations will be
useful for acquiring 2D, and in general nD, spectra on a sub-second
timescale and in a single-scan [7–9]. Such methods will be dubbed
ultrafast 2D NMR (UFNMR). In MRI it will be shown that spatial
encoding offers a novel approach to single-scan imaging, which
can overcome certain complications affecting more traditional
schemes, such as field inhomogeneities and chemical-shift related
distortions [10–12]. Such single-scan nD methods will be dubbed
ultrafast spatially encoded (SPEN) nD MRI (UF SPEN MRI). This arti-
cle will describe new approaches to collect both NMR spectra and
images based on the spatial encodings of the spin interactions in a
single-scan. Given the diversity of these worlds, we deem it conve-
nient for the sake of clarity to confine our description to a simpli-
fied setting. These simplifications will be many, yet are not meant
to confine the generality of the concepts to be discussed, which can
often be extended in a straightforward manner. These simplifica-
tions will include: (i) a focus on describing the evolution of the
spins based on magnetization vectors rather than on spin coher-
ences; (ii) a focus on the chemical shifts in a liquid as the sole
internal interaction affecting these magnetizations, while disre-
garding potential effects of spin–spin couplings, as well as aniso-
tropic or solid media; (iii) a focus on 2D experiments rather than
on general nD acquisitions, and (iv) a focus on linear field gradients
as the sole source of inhomogeneous broadening affecting the nD
NMR/MRI parallelization, even though non-linear gradients and/
or orientational effects could also be used.

With these forewords as background, we turn next to spatial
encoding and to its uses in 2D NMR and nD MRI.
1.1. Spatial encoding and single-scan 2D NMR spectroscopy

The one-site $ one-peak correspondence typical of NMR spec-
troscopy has powerful connotations regarding the analytical capa-
bilities of the technique. It appeals to the view of molecules as
composed of atoms located in chemically distinct sites (as opposed,
for example, to views defined by molecular vibrations, masses or
electronic transitions) and is aided by the highly predictable nature
of the chemical shifts for any given molecular structure. Still, as
chemical complexity grows – particularly in the realms of bio-or-
ganic and biological systems – the spectral and chemical resolution
of basic 1D NMR is found lacking. A solution to this problem came
with the dispersion of NMR data into multiple dimensions; these
experiments were triggered by a scheme put forward by J. Jeener
in the early 1970s [13], and generalized by R.R. Ernst and his
coworkers [14]. In two-dimensional (2D) NMR, one begins by suit-
ably exciting the spins onto the x̂ŷ-plane; following an evolution
period of duration t1, one then applies a mixing sequence, and fi-
nally concludes by acquiring a signal proportional to the spins’
transverse magnetization during a time t2:

Excitation� Evolution ðt1Þ �Mixing� Acquisition ðt2Þ: ð1Þ

The mixing sequence is designed beforehand, according to the type
of interaction involved and/or the information being sought. Ideally,
its purpose in correlation experiments is to transfer magnetization
from one chemical site to another if a particular kind of interaction
exists between them. In less common separation experiments, the
evolving spin remains the same during t1 and t2, and it is the nature
of the interaction affecting it that changes. Many types of mixing se-
quences have been devised throughout the years, including those
highlighting homonuclear J-couplings (TOCSY [15] and COSY
[16,17]), heteronuclear couplings (HSQC [18], HMQC [19]), and
cross-relaxation or chemical exchange (NOESY [20], EXSY [21]).
Yet, regardless of the mixing process, all these experiments consist
of repeating the basic block in Eq. (1) for many different – and usu-
ally equispaced – values of t1, with each repetition requiring an
independent scan. A 2D time-domain data set results from this,
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and is subsequently Fourier transformed along both the t1 and t2

dimensions to yield the two-dimensional spectrum being sought.
A drawback of this otherwise extremely powerful data acquisi-

tion approach is that the acquisition time it involves may end up
being dictated by sampling rather than by sensitivity consider-
ations. Moreover, since for maximizing the steady-state response
of the t1 series one must wait a time � T1 before repeating the
experiment with a different t1 value, the acquisition of a full 2D
spectrum may take minutes, solely on the basis of the indirect-do-
main sampling considerations. This problem gets exponentially
compounded as the dimensionality of the experiment increases,
and its compensation has been the subject of extensive efforts over
the last years. Indeed, the reduction of such long experimental
times would be highly beneficial not just from the practical acqui-
sition-time point of view, but also from a fundamental one: long
acquisition processes preclude one from monitoring many pro-
cesses and/or unstable systems, which would otherwise be
ammenable to nD NMR. These include monitoring the dynamics
of reactions which occur on short time scales, such as protein fold-
ing or chemical exchange reactions of chemically unstable biomol-
ecules, and the use of metastable spin states, such as those arising
from hyperpolarization procedures.

The multi-scan nature of nD NMR was found particularly con-
fining within the context of MRI, which is an inherently multidi-
mensional experiment carried out on a sample with ample
sensitivity. Proposals that have been made over the years to reduce
the minimal number of scans required to collect the nD NMR/MRI
data include departing from fast Fourier transform (FT) algorithms
and relying instead on techniques such as non-linear sampling,
maximum entropy, projection-reconstruction or least square fit-
ting procedures to bypass the typical Nyquist-imposed sampling
criteria. Proposals also include the use of small angle excitations
Fig. 1. Above: outline of a conventional 2D NMR experiment. A 1D experiment is rep
magnetic resonance spectroscopy (UF2DNMR). Instead of executing N experiments s
experiments, each with a different t1 value, are carried out in parallel. A suitable acquisi
used to recover the Free Induction Decay (FID) from each slice, once again simultaneou
and/or other relaxation-enhancement means to shorten to a mini-
mum the time intervals between scans, as well as reliance on mul-
tiple receivers. Still, the most dramatic reduction in the time
required by experiments came with Mansfield’s introduction of
Echo Planar Imaging (EPI), which exploits the man-made, gradi-
ent-driven nature of the spin interactions arising in MRI to sample
entire volumes of the relevant time-domain within a single-scan,
as a function of a single acquisition time, t. This extremely power-
ful concept enabled - among other developments - the advent of
real-time, functional MRI. However, its generalization to the acqui-
sition of arbitrary configurations, involving chemical shifts and/or
J-couplings which cannot be dictated ‘‘at will”, has proven much
more elusive.

Still, it was shown in 2002 that a dramatic reduction in the
number of scans required by any nD NMR/MRI experiments could
be achieved, if the canonical Jeener–Ernst paradigm of serial time-
domain multi-scan encodings were replaced by an analogous but
parallel idea [8]: instead of performing N1 experiments sequen-
tially in time, increasing the value of t1 with each increment, the
sample could be spatially partitioned into spatial elements, and a
different t1 value ascribed to the different partitions. This spatial
encoding is a process that can actually be imparted in a single,
one-shot fashion. Acquiring the signals originating from the vari-
ous positions could result in the retrieval of an otherwise conven-
tional spectrum, but in a single-scan. This is the route taken by so-
called spatially encoded ultrafast (UF) nD NMR spectroscopy, and
by related nD MRI localization methods (Fig. 1).

The upcoming sections will address numerous aspects of these
experiments, including how to partition the sample into slices,
how to spatially encode arbitrary X1 couplings, and how to exploit
the position-dependent FIDs to retrieve 2D spectra and images in a
single-scan. Before doing so, however, we deem it convenient to
eated N times, each time varying the evolution time t1. Below: spatially encoded
equentially, the sample is spatially partitioned into slices. A set of N different
tion method capable of probing the magnetization as a function of position is then
sly. Thus, it is possible to complete a full 2D NMR acquisition within a single-scan.
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Fig. 2. The effect of a z-gradient, G ¼ Gz. (a) The spins, initially in thermal equilibrium, point in the direction of the field. They are then excited onto the x̂ŷ-plane (b) using a
hard p

2-pulse. (c) The application of a gradient G for a time s will cause spins at different positions to precess at different rates, effectively winding them along the z-axis. Note
that chemical shift evolution is not taken into account in this figure.
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introduce a discussion of the effect of linear field gradients – a to-
pic of central importance in contemporary NMR and MRI in gen-
eral, and in UF 2D NMR/MRI in particular.

2. Elements of spatial encoding

One of the main ingredients involved in the spatial encoding of
the indirect-domain interactions is the joint application of field
gradients and of frequency-swept pulses. After defining the action
of a gradient, this section will elaborate upon the use of pulses
whose frequencies are swept linearly in time – also known as
chirped pulses [22,23]. Specifically, it will be shown how they
can be used to excite, store and flip the spins of the sample sequen-
tially in time and space, and how this can ultimately lead to a dif-
ferent effective t1 value in each physical portion of the sample.

2.1. The effect of spatial field gradients in NMR

When a sample is placed in a homogeneous magnetic field1

B ¼ B0ẑ, the spins in the sample precess about the main field. Differ-
ent spins will precess at slightly different frequencies, cðB0 þ DB0Þ �
xL þ Dx, where c is a nucleus-dependent constant known as the
gyromagnetic ratio of the nucleus; xL ¼ cB0 is the Larmor frequency;
and Dx ¼ cDB0 is a small quantity which depends on the precise
chemical environment of the spins as is given by their chemical shift.
The xL term is shared by all spins of a particular species, and can be
accounted for using the so-called rotating frame transformation;
hence, in what follows, xL will be omitted. Furthermore, a single,
particular chemical shift, Dx ¼ X1, will be the focus of the present
analysis.

Linear magnetic field gradients induce a small distortion of the
nuclear precession frequencies, which vary linearly throughout the
sample along the gradient’s direction. Mathematically, these field
variations are described by a vector G, specified in units of field
per unit length (e.g., Gauss per centimeter, milli-Tesla per meter,
etc). The overall precession frequency in the rotating frame in
the presence of such a gradient will be given, for a particular chem-
1 It is important at this point to make a distinction between two sets of coordinates
used in NMR. The physical, Cartesian coordinates of real space will be marked ðx; y; zÞ,
while the rotating frame of spin-space, wherein the magnetization vectors evolve,
will be marked by ðx̂; ŷ; ẑÞ. These two systems can be considered independent of each
other [24].
ical site, by a superposition of the chemical shift X1 and an addi-
tional term, cG � r:

xðr; tÞ ¼ X1 þ cGðtÞ � r: ð2Þ

Most NMR/MRI spectrometers allow one to vary the gradient, G, as a
function of time, and hence a time-dependence has been noted in
Eq. (2).

Fig. 2 illustrates the evolution induced by a pulsed DC gradient
along the z-axis, G ¼ Gz, following a p

2 excitation pulse. The spins,
initially in thermal equilibrium along the Bloch sphere’s ẑ-axis,
are thus tipped onto the x̂ŷ plane. Following this, each spin
precesses with a frequency proportional to its position, xðzÞ ¼
X1 þ cGz. Pictorially, the effect of such pulsing and constant gradi-
ent combination can be described as a winding of the spins
(Fig. 2c), as for a given time interval s, each spin has precessed
by a different angle, depending on its z-coordinate. One can also
describe this evolution as inducing a dephasing of the bulk signal:
since the NMR/MRI experiment monitors a vectorial sum over all
spins in a sample, the signal from an ensemble of spins facing dif-
ferent directions adds up destructively. Indeed, a spin at position r
will, under the influence of a general time-dependent gradient GðtÞ
acting between times t1 and t2, acquire a phase D/G given by:

D/Gðr; t1; t2Þ ¼
Z t2

t1

xðr; t0Þdt0 ¼ c
Z t2

t1

Gðt0Þ � rdt0: ð3Þ

It is often customary to introduce the notation:

kðtÞ ¼ c
Z t

t1

Gðt0Þdt0: ð4Þ

by which the acquired phase due to the gradient in the time interval
t0 2 ½t1; t2� can be written:

D/Gðr; tÞ ¼ kðtÞ � r: ð5Þ

This notation draws out the Fourier conjugacy of the variables r and
k, similar to the conjugacy between time and frequency in usual
pulsed NMR experiments. This also suggests that monitoring NMR
signals over an array of k-values and Fourier transforming the ac-
quired data will deliver spatially-dependent information. To visual-
ize this, we can describe the magnetization as:

Mðr; tÞ / q0ðrÞ cosðkðtÞ � rÞx̂þ sinðkðtÞ � rÞŷð Þ
� Mxðr; tÞx̂þMyðr; tÞŷ: ð6Þ



Fig. 3. Intuitive illustration of the effect of a chirped p
2 excitation pulse of duration Te on a spin at a point z along the sample, having an off-resonance frequency

xeðzÞ ¼ X1 þ cGez. (a) Initially, the phase of the RF pulse is 0, and the spin is in thermal equilibrium along the ẑ-axis. (b) At time tz , the offset xcðtzÞ of the chirp matches xeðzÞ
and instantaneously tips the magnetization onto the x̂ŷ-plane at a right-angle to the RF pulse. Here Mðtð�Þz Þ represents the magnetization an instant before the chirp’s action,
and MðtðþÞz Þ an infinitesimal time step after. (c) For the remaining duration of the pulse, Te � tz , the spin precesses freely, acquiring an additional phase xeðzÞðTe � tzÞ.

2 The tilt angle will be proportional to the power of the chirp at that particular
instance in time, that is to B1ðt0Þ. The actual tilt angle can be calibrated by changing
this B1 value – see Section 2.2.1.
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It is convenient at this point to switch to a complex notation, where
Mþ � Mx þ ıMy / q0ðrÞeıkðtÞ�r. The signal picked up by the receiver
coil is proportional to the vectorial sum of the x̂ŷ-components of
the magnetization: s /

R
MþðrÞdr, where the integration is carried

out over the entire sample. (The proportionality constant depends
on the geometry of the coil and the electronics – for a non-ideal re-
ceiver, one would have to introduce some weighting function wðrÞ
to account for the spatially-dependent sensitivity, s /

R
sample

wðrÞMþðrÞdr. In what follows an ideal receiver will be assumed,
for which wðrÞ ¼ 1.) Acquiring in the presence of a gradient, one
thus measures:

sðtÞ /
Z

Mþðr; tÞdr /
Z

q0ðrÞeık�rdr: ð7Þ

For a constant density q0ðrÞ, the signal sðtÞ / sinðcGtLÞ
cGtL and the obser-

vable will decay rapidly for large cGt values. Designating r and
kðtÞ as conjugate variables, it is clear that Eq. (7) represents a 3-D
Fourier transformation of the spin density q0ðrÞ: the acquired signal
is proportional to the Fourier transform of q0ðrÞ. By changing GaðtÞ,
and hence the conjugate variable kðtÞ, one can sample this over the
so-called k-space over enough values to perform an inverse Fourier
transform and reconstruct q0ðrÞ. This basic observation lies at the
heart of MRI, and will be further elaborated later on.

2.2. Chirped excitation pulses

Fig. 2 shows the action of a constant, hard RF pulse, followed by
a gradient. Consider next the action of an RF pulse acting simulta-
neously with a gradient, which, for simplicity, we shall assume is
applied along the spatial z-axis. With the aid of a linearly swept
(chirped) RF pulse, this field gradient allows one to excite the spins
from a point za to a point zb sequentially in time. This is an impor-
tant ingredient in the spatial encoding of the spin interactions,
whose properties we consider next.

Unlike the usual NMR hard-pulse, which (when viewed in its
on-resonance rotating frame) has a fixed phase and a bandwidth
defined by its duration, a chirped RF pulse has a frequency, xcðtÞ,
which varies as a function of time. It will, in general, be described
by:

BðtÞ ¼ B1ðtÞ cos /cðtÞð Þx̂þ sin /cðtÞð Þŷ½ �; ð8Þ
where B1ðtÞ is a slowly varying envelope, and

/cðtÞ ¼
Z t

0
xcðt0Þdt0; ð9Þ

is the phase accumulated by the RF. Note that the trivial case in
which B1ðtÞ and xcðtÞ are constant corresponds to a simple rectan-
gular pulse with an off-resonance offset xc . If xcðtÞ varies with time
as

xcðtÞ ¼ Oi þ Rt; ð10Þ

the RF is said to be linearly chirped. Oi is the initial sweep frequency
(in, e.g., rad/s) and R is the rate of the chirp, having dimensions of
angular frequency per unit time (e.g., rad=s2). One can define
R ¼ DO=Te, where Te is the chirped pulse’s duration and DO is the
chirp’s bandwidth: DO ¼ Of � Oi, where Of � xcðTeÞ;Oi � xcð0Þ. DO
represents the range of frequencies affected by the pulse through-
out its duration. Fig. 4 shows the basic parameters and features of
a typical linearly chirped pulse: amplitude, frequency and phase
characteristics.

The spin evolution imparted by the chirped excitation RF pulse
can be described as illustrated in Fig. 3: at each instant in time, the
chirped pulse has a well defined instantaneous frequency,
xcðtÞ ¼ d/c=dt. The pulse will affect spins having a precession fre-
quency close to this resonant frequency, and have a weaker effect
on spins with resonant frequencies far away from it; the extent and
reach of this influence will depend on the strength of the applied B1

field and on the rate, R. To a first approximation, we shall assume
that this excitation width can be taken to be negligibly small.
Hence, at a certain time, t0, the chirp pulse will only affect those
spins with an off-resonance frequency equal to xcðt0Þ, and tip them
about the RF field onto the x̂ŷ plane.2 Thus, a linearly swept chirp
pulse, having a linear xcðtÞ, will sequentially affect all frequencies
from Oi to Of . In addition, the phase /cðtÞ of the RF pulse at time t0

will serve to determine about which axis the spins having an off-res-
onance frequency xcðt0Þ will be tipped.
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Fig. 3 highlights this feature, assuming for concreteness that the
spread in the spins’ intrinsic precession frequencies arises due to
the presence of a field gradient acting along the z-axis. The gradi-
ent creates a one-to-one correspondence between position and fre-
quency via xeðrÞ ¼ X1 þ cG � r ¼ X1 þ cGez. A linear chirped
excitation having initial and final frequencies Oi;Of , will then
sequentially excite all spins from za ¼ xcð0Þ=cGe to zb ¼ xcTe=

cGe. Fig. 3 follows the magnetization corresponding to a particular
slice z throughout the chirp’s duration, Te. This spin packet will re-
main unaffected until a time tz, at which the instantaneous fre-
quency of the chirp matches its own. At that time it gets
instantaneously flipped, and will continue to precess freely until
the end of the RF pulse.

2.2.1. The spins’ response to chirped excitation pulses
The above reasoning can be made formal and used to compute

the position-dependent phase of the spins in the x̂ŷ-plane follow-
ing a chirped excitation pulse of duration Te. Let

xeðzÞ ¼ X1 þ cGez; ð11Þ

be the position-dependent off-resonance frequency of the spins (in
rad kHz), where X1 is the chemical shift of the spins in question. Let
tz be the time at which the frequency of the chirp matches the off-
resonance frequency of the spins at z, at which xeðzÞ ¼ xcðtzÞ.
Assuming a linear chirp (Eq. (10)) and solving for tz, one obtains:

tz ¼
cGezþX1 � Oi

R
: ð12Þ

The total phase UeðzÞ acquired by the spins at z will be the sum
of two contributions: that of the RF pulse imparting the nutation,3
3 In general, spins excited onto the x̂ŷ-plane by a hard-pulse with a phase /
(measured with respect to the x̂-axis) will get tilted perpendicularly to it and end up
making an angle /� p

2 with the x̂-axis. For example, a hard-pulse about the x̂ axis
ð/ ¼ 0�Þ will tilt spins onto the �ŷ axis ð/ ¼ �90�Þ. In this treatment, when the
frequency of the spins at z matches that of the chirped pulse at the time tz , its action is
approximated by a hard-pulse having a phase /cðtzÞ.
and that accrued after being tipped onto the x̂ŷ-plane. Indeed, spins
are excited onto the x̂ŷ plane at a time tz by an RF pulse having a par-
ticular orientation in the x̂ŷ-plane at that time, determined by its
phase, /cðtzÞ, at time tz. That is, they are rotated from their thermal
equilibrium position along the ẑ-axis onto the x̂ŷ-plane about an axis
in that plane, subtending an angle /cðtzÞ with the x̂-axis. Further-
more, having been tilted onto the x̂ŷ-plane, spins will precess with
a frequency xeðzÞ for the remainder of the pulse. Thus:

UeðzÞ ¼ /cðtzÞ �
p
2

� �
þxeðzÞ Te � tzð Þ: ð13Þ

Substituting Eqs. (11), (10) into Eq. (13), and using
/cðtÞ ¼

R t
0 xcðt0Þdt0, one ends up with a quadratic dependence of

the spins’ phase on position:

UeðzÞ ¼ �
ðcGeÞ2

2R
z2 þ cGe Te þ

Oi �X1

R

� �
z

þ �ðOi �X1Þ2

R
þX1Te �

p
2

 !
: ð14Þ

A common weakness of both these intuitive and theoretical
descriptions appears to lie in the instantaneous effects attributed
to the sweeping of the RF’s offset. Nevertheless, numerical simula-
tions (and experiments) vouch for the reliability of this important
approximation. Fig. 5 illustrates this with simulations of the time
evolution of the magnetization components of spins at different
positions along a 20 mm sample in response to a swept pulse, ap-
plied in the presence of a gradient. Note how the spins are negligi-
bly affected by the chirped pulse, except during a very short time
instant during which they get tipped almost instantaneously.
Numerical simulations also vouch for the quantitative accuracy
of the final result in Eq. (14), as illustrated by the plots in Fig. 6.

In discussing chirped pulses so far, it has been assumed that
their power has been calibrated so as to effect the appropriate tilt
angle; e.g., that the p

2 chirped excitation pulses have tipped the
spins by precisely 90� onto the x̂ŷ-plane. It is possible to show
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[10] that the tilt angle of a chirped excitation at low powers and
until reaching adiabatic-passage conditions is proportional to

ffiffiffi
R
p

,
where R is the sweeping rate of the chirp, as defined by Eq. (10).
The precise constant needed to ensure a p

2 angle can be found, for
instance, via numerical simulations. Hence,

cB1 ¼ 2p	 0:27	
ffiffiffi
R
p

; ð15Þ

constitutes a proper power level calibration for a constant n/2-
tilting envelope. When using a time-dependent (as opposed to a
constant) envelope, though, it must be remembered that the tilt an-
gle is proportional to the area under the pulse,

R Tp

0 B1ðt0Þdt0. To a first
approximation Eq. (15) must be recalibrated by a factor Kenv, equal
to the ratio of the areas under the respective pulses – rectangular
and time-dependent:

Kenv ¼
cB1;maxTp

c
R Tp

0 B1ðtÞdt0
; ð16Þ

where B1;max is the maximal amplitude of B1ðtÞ. For a wurst-
modulation,

cB1ðtÞ / 1� sin40
p t � Tp

2

� �
Tp

0@ 1A						
						; ð17Þ

Kenv ¼ 1:1433. Hence, if a p
2-chirp envelope is chosen to have such

shape, its maximal amplitude, as expressed in Eq. (15), should be
multiplied by 1.1433.
2.3. Chirped storage pulses

Chirped pulses can be used not only to excite spins aligned along
the ẑ-axis onto the x̂ŷ-plane with a spatially-dependent quadratic
phase; they can also be used to store the magnetization along the
ẑ-axis with a linear, amplitude-modulated phase. Following the
same line of reasoning as before, let B1ðtÞ be a linear chirped storage
pulse of duration Ts, applied in the presence of a field gradient Gs,
with an instantaneous frequency4 xcðtÞ ¼ Oi þ Rt. The spatially
dependent off-resonance frequency of the spins is

xsðzÞ ¼ X1 þ cGsz: ð18Þ

Denoting by tz the time at which the RF’s instantaneous frequency
matches the off-resonance frequency of the spins at z;xcðtzÞ ¼
xsðzÞ, one obtains:

tz ¼
cGszþX1 � Oi

R
: ð19Þ

As with the excitation chirp, it will be assumed that the chirp’s ef-
fect on the spins is instantaneous, such that at time tz only the spins
at position z will be affected by the RF, and that the chirp’s power
has been properly calibrated such that those spins will get rotated
precisely by 90� back to the z-axis. This time, however, the RF pulse
will only flip that component of the spins in the x̂ŷ-plane which is
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Fig. 6. Calculated response of spins in a 20 mm sample as a function of position to the chirp RF shown in Fig. 4, applied in the presence of a gradient Ge ¼ 5:6 Gauss=cm. (a)
The x-component of the magnetization following the pulse. (b) The phase of the magnetization (solid), showing excellent agreement with the theory, Eq. (14) (dashed). (c) The
z-component of the magnetization.

Fig. 7. The effect of a chirped storage pulse on a spin in the Bloch sphere’s x̂ŷ-plane at a particular position z along the sample. (a) At time t ¼ 0 the spin has some initial phase,
/0ðzÞ, while the RF pulse has no phase, /cð0Þ ¼ 0. (b) At time tz , the spin is acted upon by the RF pulse. The figure shows how Mðtð�Þz Þ, the spin’s state just prior to the chirp’s
action, can be decomposed into a part Mjj parallel to B1 at time tz , and a part M? perpendicular to it, both in the Bloch sphere’s x̂ŷ-plane as well. (c) The chirp instantaneously
tilts M? onto the z-axis, while leaving Mjj in the x̂ŷ-plane. The stored component of the magnetization remains stationary for the rest of the pulse, while Mjj continues to freely
precess.
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perpendicular to it. The magnetization components of the spins par-
allel to the RF pulse will not get stored; they remain in the x̂ŷ-plane
and may be disregarded.

Let MþðzÞ ¼ M0eı/0ðzÞ denote the magnetization in the x̂ŷ-plane
as a function of position at the beginning of one such storage pulse,
assumed to be of uniform magnitude (i.e., qðrÞ ¼ 1) but having a
spatially-dependent phase /0ðzÞ (as would be the case following
a chirped excitation). Consider a spin at a particular position z. That
spin precesses in the x̂ŷ-plane up until time tz, whence it accumu-
lates a phase xsðzÞtz; its magnetization vector at this point is
MþðzÞ ¼ M0eıð/0ðzÞþxsðzÞtzÞ. At time tz, it is acted upon by the storage
RF pulse, B1ðtÞeı/cðtzÞ (Fig. 7). Decomposing the magnetization vec-
tor of the spins into a component parallel to the field, Mjj, and a
component perpendicular to it, M?, leads to5:
5 Given an RF field B ¼ B1eı/RF and a magnetization vector Mþ ¼ M0eı/mag in the x̂ŷ-
plane, M can always be decomposed into a part perpendicular to B and a part parallel
to it. The perpendicular part – which will get acted upon by the field – will have a
phase equal to /RF þ p

2, i.e., it will be at a right-angle to the field; hence the /cðtzÞ þ p
2

term, appearing in Eq. (21). The parallel part, on the other hand, will have a phase
identical to that of the RF field.
MþðzÞ ¼ M? þMjj; ð20Þ

M? ¼ M0 sinð/0ðzÞ þxsðzÞtz � /cðtzÞÞeı /cðtzÞþp
2ð Þ; ð21Þ

Mjj ¼ M0 cosð/0ðzÞ þxsðzÞtz � /cðtzÞÞeı/c ðtzÞ: ð22Þ

Assuming the pulse power has once again been properly calibrated
for a 90� tip angle, the perpendicular component gets stored along
the ẑ-axis and the parallel component remains in the x̂ŷ-plane. Once
stored, a spin feels no additional fields, the RF being off-resonance
for the remainder of the pulse. Hence its transverse component con-
tinues to precess with a frequency xsðzÞ and dephases further,
while its stored longitudinal component remains constant in time.
Neglecting relaxation, this last component is equal to:

MzðzÞ ¼ M0 sinð/0ðzÞ þxsðzÞtz � /cðtzÞÞ: ð23Þ

This formula describes the z-component of the magnetization as a
function of position at the end of the pulse.

The chirp’s effect is thus 3-fold: it adds a phase xsðzÞtz � /cðtzÞ
to the spins; it stores the magnetization along the z-axis; and it
amplitude modulates it by the new phase. The overall phase accrued
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can be calculated by substituting xs; tz, and /cðtÞ (Eqs. (19), (18)
and (9)) explicitly:

xsðzÞtz�/cðtzÞ ¼
ðcGsÞ2

2R

 !
z2þ �cGsðOi�X1Þ

R

� �
zþ ðOi�X1Þ2

2R

 !
:

ð24Þ

The calibration of chirped storage pulses is identical to that of
excitation pulses, as discussed in Section 2.2.1.

2.4. Chirped p-pulses

Chirped pulses can be used not only to excite and store spins,
but also to invert or flip them in the x̂ŷ-plane. Such RF sweeps be-
long to the family of ‘‘adiabatic” pulses, known to preserve the rel-
ative angle between the spin magnetization and the effective
magnetic field in a suitable rotating frame. In particular, chirped
p-pulses are functionally similar to excitation and storage chirps
(Eq. (8) and Fig. 4), but possess higher power levels so as to pro-
duce a 180� flip angle.

The mechanism by which such a p flip is produced warrants
further discussion. Much like the p

2 chirp, a swept p chirp flips spins
‘‘instantaneously” when its resonant frequency matches the pre-
cession frequency of the spins. Unlike the p

2 chirp, a p chirp con-
serves the relative angle h between the spins’ magnetization and
the effective B-field as it changes [25,26,23]. This is best under-
stood in a frequency-modulated frame rotating about the ẑ-axis at
the same rate as the RF field. In such a frame, the total magnetic
field – which, in the rotating frame is of the form cBrotðtÞ ¼
ðcB1ðtÞ cosð/cðtÞÞ; cB1ðtÞ sinð/cðtÞÞ;X1Þ – becomes6

cBFMðtÞ ¼ cB1ðtÞ;0;X1 þ OðtÞð Þ: ð25Þ

Note the additional OðtÞ ‘‘fictitious force” term added to the z-com-
ponent, as a result of the non-uniform rotation of this frame of ref-
erence. In this frequency-modulated (FM) frame, the RF field
remains in the x̂–ẑ plane, and its constant x̂-component implies that
the field vector BFMðtÞ sweeps out a triangle. Assuming for simplic-
ity that the chemical shift is significantly smaller than the chirp
bandwidth, i.e., X1 
 DO, implies that, in this frame, BFM starts
out and ends up being almost parallel to the ẑ-axis, as illustrated
in Fig. 8.

The adiabatic theorem [27] states that, when the RF field’s
direction varies more slowly than the precession frequency of the
spins (imposed by BFM), the angle between the field and the spins is
conserved.7 A direct consequence of the adiabatic theorem is that
the angle h between the field and the spins is time-invariant. Of par-
ticular relevance for the present discussion is a state where spin
packets are initially distributed in the x̂ŷ-plane, represented by the
shaded disc in Fig. 8. This plane rotates adiabatically along with the
RF field in such a way as to conserve h. Fig. 9 plots the effect calcu-
lated for such a swept p-pulse, applied in the presence of a linear z-
gradient, on an ensemble of spins assumed to be initially along the ẑ
or the x̂ axes of the Bloch sphere. In the former case, the typical fol-
lowing of Mz and BFM is easily discernable.

From a standpoint of spatial encoding, it is relevant to compute
not only the rotation but also the phase imparted by these chirped
p-pulses. This analysis of p-chirps is similar to that of the p

2-chirps
discussed earlier. Assuming a pulse having duration TðpÞ is applied
in the presence of a gradient GðpÞ, a spin with chemical shift X1 and
6 The chirp envelope, B1ðtÞ, will be assumed constant. Slightly smoothed B1

amplitude envelopes (e.g., Eq. (17)) will modulate the response, but not alter the
conclusions derived herein.

7 This fact is used in the design of adiabatic inversion pulses, in which the RF field
and spins start along parallel to the ẑ axis, and – by slowly sweeping the field until it
points along �ẑ – one can ensure that the spin follow it, ending up pointing along the
�ẑ direction as well.
position z will have its off-resonance frequency given by
xðpÞðzÞ ¼ X1 þ cGðpÞz. An RF endowed with a linear frequency
sweep given by Eq. (10) will – once again, to a good approximation
– flip the spin only when xc matches xðpÞ for that z. This will occur
at a time tz such that xcðtzÞ ¼ xðpÞðzÞ. Solving explicitly for tz, Eq.
(12) is recovered, with Ge swapped for GðpÞ. A spin with an initial
phase /0 positioned at z will, therefore, precess freely until time
tz and acquire a phase xðpÞtz. At this instant, the chirp will effec-
tively flip this spin with respect to an axis colinear with the RF
pulse at time tz. Assuming, as before, that /cðtÞ �

R t
0 xcðt0Þdt0 will

be the phase of this RF at time t into the pulse, then /cðtzÞ is also
the angle with the x̂-axis in the x̂ŷ-plane, with respect to which
the spin at z is p-flipped. As a result of this effect the phase of
the spin will become �/0 þ 2/cðtzÞ �xðpÞðzÞtz, where /0 is the spin
phase before applying the chirp. The magnetization vector will
then continue precessing with a frequency xðpÞðzÞ for the remain-
ing duration of the pulse, TðpÞ � tz, and will hence acquire an addi-
tional phase xðpÞðzÞðTðpÞ � tzÞ. The total phase of the magnetization
vector at the end of the pulse is therefore

/ðpÞðzÞ ¼ �/0ðzÞ þ 2/cðtzÞ � 2xðpÞðzÞtz þxðpÞðzÞTðpÞ: ð26Þ

This sequence of events is described pictorially in Fig. 10, with a
time plots of the x̂ŷ magnetization components for spins at differ-
ent positions along the sample shown in Fig. 11. By substituting
the explicit expressions for xðpÞ and tz into Eq. (26), this overall
/ðpÞðzÞ phase can be explicitly calculated:

/ðpÞðzÞ ¼ �/0ðzÞ �
cGðpÞ
� �2

R

0B@
1CAz2

þ 2cGðpÞðOi �X1Þ
R

þ cGðpÞT ðpÞ
 !

z

þ T ðpÞX1 �
ðOi �X1Þ2

R

 !
: ð27Þ

An important consideration in all this analysis is whether and
when the RF chirp fulfills the adiabaticity condition. This can be ex-
posed explicitly using Eq. (25) to compute the angle a between the
field in the frequency-modulated frame, BFM , and the x̂-axis. Using
straightforward trigonometry :

aðtÞ ¼ arctan
X1 � OðtÞ

cB1


 �
: ð28Þ

The magnitude of the derivative of this angle then measures the
rate of change of the field direction, and is given by:

daðtÞ
dt

				 				 ¼ cB1R

ðOðtÞ þX1Þ2 þ ðcB1Þ2
: ð29Þ

By differentiating and equating the result to zero, da=dt is found to
reach its maximal value at

textremum ¼
TðpÞ

2
�X1

R
� TðpÞ

2
; ð30Þ

this value is8 jda=dtjmax ¼ R=cB1. On the other hand, the spin preces-
sion frequency about BFMðtÞ is

xeff ðtÞ ¼ cBFMðtÞj j; ð31Þ

and is slowest when BFM is smallest, that is, at t ¼ textremum, when its
ẑ-component is 0 and jcBFMj ¼ cB1 � xeff;min (see Fig. 12). The RF
field BFM will remain ‘‘adiabatic” as long as its rate of change is
8 This is geometrically sound, as the maximum occurs roughly halfway through the
pulse, when the field’s z-component is 0 and its change is most pronounced (see
Fig. 8b).



Fig. 8. Adiabatic RF p chirp, viewed in a frequency-modulated (FM) frame at: (a) the beginning of the chirp; (b) midway through the chirp; (c) at its conclusion. The shaded
disc represents the spins in the x̂ŷ-plane at the beginning of the pulse. Due to the pulse’s adiabaticity, the angle between the disc and the field is kept constant throughout the
pulse, effectively flipping the spins in the x̂ŷ-plane.
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Fig. 9. Calculated response of spins in a 20 mm sample, as a function of position, to a p-chirp, applied in the presence of a gradient G ¼ 4:7 Gauss=cm. The spins were
assumed to start out either along the ẑ-axis (top panels, a–c) with an initial magnetization vector M ¼ ð0;0;1Þ, or the x̂-axis (bottom panels, d–f), with an initial magnetization
vector M ¼ ð1;0;0Þ. (a and d) The absolute value of the magnetization’s projection on the x̂ŷ-plane. (b and e) The phase induced by the chirp in the transverse plane. Note in
(e) the agreement with between the simulated result (solid, blue) and the theoretical quadratic prediction, as given by Eq. (27) (red, dashed). (c and f) The z-component of the
magnetization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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slower than the spins’ precession about it; this is assured to hold
throughout the chirp if jda=dtjmax 
 xeff;min, and furnishes the clas-
sical condition:

cB1 �
ffiffiffi
R
p

: ð32Þ

Further discussions on this can be found in [28].
Due to their adiabatic nature, the calibration of p chirps is

somewhat different from that described for their p
2 counterparts.

As shown in Eq. (32), the RF’s power in kHz must be larger thanffiffi
R
p

2p. In practice, it is found that setting cB1 to be at least 2.5 times
larger than the power for an equivalent p

2 chirp (Eq. (15)),
achieves an adequate performance. It must also be borne in
mind that, in accordance with the analysis presented in Sec-
tion 2.4, the p chirp approximations break down for chemical
shifts comparable to the chirp’s bandwidth; this is evident in
the tails of the frequency responses plotted in Fig. 9. To ensure
a constant response, the chirp’s bandwidth must be suitably
enlarged.

3. Single-scan ultrafast 2D NMR

3.1. Approaches to spatial encoding

Having introduced the spin evolutions imparted by different
chirped RF pulses and the action of gradients, the principles at
the heart of single-scan 2D NMR can now be outlined. This is



Fig. 10. Time evolution of a spin’s magnetization vector, M, situated at z during the application of a p-chirp. (a) Initially, at t ¼ 0;M is assumed already in the x̂ŷ-plane with
some initial phase /0ðzÞ. (b) M precesses freely and accumulates a phase xðpÞtz until acted upon by the RF pulse. The figure shows M right prior to being flipped, Mxyðtð�Þz Þ
(solid) and right after, MxyðtðþÞz Þ (dashed). Note that the axis around which the spin is flipped is colinear with the RF pulse at time tz , i.e., an axis in the x̂ŷ-plane making an
angle /cðtzÞ with the x-axis. Following the chirp action, the phase of M becomes �/0ðzÞ þ 2/cðtzÞ �xðpÞðzÞtz . (c) Following the p-flip, M continues precessing freely until the
end of the pulse at time T ðpÞ , accumulating a additional phase xðpÞðTðpÞ � tzÞ. The total phase of the magnetization vector at the end of the pulse is, therefore,
�/0ðzÞ þ 2/cðtzÞ � 2xðpÞðzÞtz þxðpÞðzÞTðpÞ.
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spatial encoding; i.e., the physical partitioning of a sample into
an array of voxels possessing different evolution periods. The
objective, we remind again, is the creation of a position-depen-
dent t1 evolution time of the form t1ðzÞ ¼ Cz. This section focuses
on achieving this goal by the three schemes detailed in Fig. 13;
additional schemes are discussed in [29–32]. For simplicity, we
shall assume in what follows that all chirps have symmetrical
bandwidths (namely that the range of frequencies they excite
is centered about 0, or, equivalently, that Of ¼ �Oi ¼ DO

2 ), so that
the bandwidth, DO, is set equal to cGeL, where L is the sample’s
physical size9

3.1.1. Indirect-domain encoding with phase modulation p
2 � p
� �

Consider an ensemble of spins in thermal equilibrium, acted
upon by a p

2 excitation chirp with rate R
p
2ð Þ, duration T

p
2ð Þ and

bandwidth DO
p
2ð Þ, in the presence of a gradient G

p
2ð Þ. At the end

of such a pulse, the spins will have been excited onto the
x̂ŷ-plane, and will have accrued the phase given by Eq. (14). Such
a phase contains a part linear in z times the chemical shift, which
is desirable; but also an unwanted quadratic phase, proportional
to z2. In order to remove the latter, a p-chirp is applied, with
duration T ðpÞ, rate RðpÞ and initial bandwidth DOðpÞ. This second
pulse keeps the spins in the x̂ŷ-plane, but inverts their phase
[33] and increments it as detailed in Eq. (27). By choosing
2GðpÞTðpÞ ¼ G

p
2ð ÞT p

2ð Þ, the phase of the spins following the p chirp
will be:

/
p
2�pðzÞ ¼ � cGðpÞT

p
2ð ÞDO

p
2ð Þ

2DOðpÞ

" #
zþ

c GðpÞ � G
p
2ð Þ

� �
T

p
2ð Þ

2pDOðpÞ

24 35X1z

þ p
2
� T

p
2ð ÞX1

2
þ T

p
2ð ÞX2

1

4pDO
p
2ð Þ
� TðpÞX2

1

2pDOðpÞ

 !
: ð33Þ
9 To avoid the imperfections in the frequency response near the edges of the
bandwidth, one can set L slightly larger than the sample’s physical size, in effect
exciting a wider bandwidth. A factor of 1.2 strikes a good compromise between
achieving an even response and avoid irradiating frequencies not present in the
sample.
Eq. (33) has precisely the form sought after. It has no quadratic term
in z; it has a constant term, which merely phases the peaks and can
be dealt with using post-processing; it has a part linear in z and
independent of the chemical shift, which – as will be shown in Sec-
tion 3.2 – moves the spectrum along the indirect domain and can be
fixed using a gradient Gp prior to acquisition (cf. Fig. 13a10); and it
has a term linear in both z and X1, of the form t1ðzÞX1 with

t1ðzÞ ¼ �
c G

p
2ð Þ � GðpÞ

� �
T

p
2ð Þ

DOðpÞ
z ¼ T

p
2ð Þ � 2T pð Þ

L
z: ð34Þ
3.1.2. Indirect-domain encoding with amplitude modulation p
2 � p

2

� �
An alternative method to the one presented above uses two suc-

cessive p
2-chirps to excite and store the spins [34], as illustrated in

Fig. 13b. The purpose of using two chirped pulses in both schemes
is the same: the removal of the quadratic phase terms, propor-
tional to z2. The current approach, however, differs from the previ-
ous one by amplitude modulating the magnetization: the initial p

2
excitation chirp tips the spins onto the x̂ŷ-plane with a quadratic
phase given by Eq. (14). At the end of the second p

2 storage chirp,
part of the magnetization is stored along the z-axis and part re-
mains in the x̂ŷ-plane and is dephased by a strong gradient Gd,
ensuring that transverse components will not contribute to the ac-
quired signal. Assuming both chirps have equal durations T

p
2ð Þ and

sweep rates R
p
2ð Þ, and that the gradients used are equal and oppo-

site in sign, GðexciteÞ ¼ �GðstoreÞ � G
p
2ð Þ, then the form of the magneti-

zation stored along the z-axis following the second chirped pulse is
(see Eq. (23)):

MzðzÞ ¼ M0 sin �2cG
p
2ð ÞT p

2ð Þz
DO

p
2ð Þ

X1 þ T
p
2ð ÞX1 �

p
2

" #
: ð35Þ

Denoting

t1ðzÞ ¼ �
2cG

p
2ð ÞT p

2ð Þ

DO
p
2ð Þ

z ¼ 2T
p
2ð Þz

L
� tmax

1

L
z; ð36Þ
10 A purge gradient can also be used between the pulses to achieve the same end.
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where tmax
1 � 2T

p
2ð Þ is the total encoding time, one sees that MzðzÞ

can be written as M0 sin½t1ðzÞX1 þ ðconst: termsÞ�.
Following the action of the dephasing gradient Gd, a mixing se-

quence is applied while the spins are stored, and the ensemble is
then tipped back onto the x̂ŷ-plane using a hard-pulse. The result-
ing transverse magnetization is then MþðzÞ / sinðt1ðzÞX1þ
wðzÞ þ aÞ, which can be written as the sum of complex
exponentials:

MþðzÞ /
1
2i

e
ı t1ðzÞX1þT

p
2ð ÞX1�p

2

� �
þ 1

2i
e
�ı t1ðzÞX1þT

p
2ð ÞX1�p

2

� �
: ð37Þ

The application of a purge gradient Gp for a duration Tp, as shown in
Fig. 13b, adds an additional phase cGpzTp to both exponentials. As
discussed in Section 3.3.2, the effect of such a phase is to shift the
indirect-domain spectra. Hence, although both signals in Eq. (37)
will contribute to the FID, it is possible to shift one of them outside
the spectral width while observing the other. A somewhat similar
effect, although with opposite signs for the two terms in Eq. (37),
could be introduced by a gradient pulse Gp acting before the storage
chirped pulse.

3.1.3. Indirect-domain constant-time encoding ðp� pÞ
A third approach to spatial encoding relies on exciting the spins

with a hard p
2 pulse, followed by two chirped p-pulses with identi-

cal sweeps but reversed gradients [35] (Fig. 13c). Assuming that
the spins have initially been excited onto the x-axis, the first p
chirp imparts to them a phase /ðpÞðzÞ given by Eq. (27), with
/0ðzÞ ¼ 0. Following a second p chirp, the phase of the spins at
the end of the sequence is:

/ðp�pÞðzÞ ¼ �4cGðpÞTðpÞX1z
DO

: ð38Þ

This once again gives the desired form, with

t1ðzÞ ¼ �
4cGðpÞTðpÞ

DO
¼ 4TðpÞ

L
z � 2tmax

1

L
z; ð39Þ

where tmax
1 ¼ 2TðpÞ is the total encoding time.



Fig. 12. The precession angular frequency of the spins (dashed, Eq. (31)) and the
rate of change of the effective RF field (solid, Eq. (29)) as a function of time for a 2-
millisecond p-chirp, as viewed in the frequency-modulated frame. Note that at all
times the precession frequency is significantly larger than the rate of change of the
field’s direction. The two are closest roughly midway throughout the pulse, at a
time given by Eq. (30). Additional parameters: a bandwidth of 40 kHz and a power
of 2.9 kHz for the chirped pulse, and zero chemical shift for the spins. It can be
shown that the effect of non-zero chemical shift is merely to shift the pattern
sideways, without affecting the distance between the curves.

11 No assumption will be made about the mixing used, as any phase shifts induced
by the mixing will merely get added homogeneously to the phases created by the
spatial encoding, and will modulate the peaks as in a conventional 2D NMR
experiment.

12 The actual phase may have additional terms as well, with its most general form
given by Eq. (44). Although these terms have physical significance, they do not alter
appreciably the conclusions derived in this section and are therefore set to zero.

13 The signal would remain undetectable even if the spins are left to evolve
according to their chemical shifts, MþðzÞ ! MþðzÞeıX2t2 . Since all spins precess with
the same angular frequency, the overall winding is conserved. This can be thought of
as letting the helical shape presented in Fig. 16 rotate as a whole.
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3.1.4. Advantages and disadvantages of each method
Although all three methods presented for spatially encoding a

sample achieve similar goals – an effective t1 evolution which in-
creases as a function of position – each has its own advantages
and disadvantages.

The frequency response of the amplitude-modulated encoding
is better behaved compared to the alternatives, which employ p
chirped pulses. p

2 pulses are also easier to optimize using, say, a
Shinnar-Le Roux (SLR) [36] or optimal control [37] algorithms, as
excitation/storage pulses operate within the limits of a linear re-
sponse to a very good degree of accuracy. On the other hand, there
are two considerable disadvantages to the excitation-storage
approach:

� It is not well suited to mixing sequences which require that
spins remain in the x̂ŷ-plane, such as COSY, or J-modulated
spectroscopies.
� Signal intensity may be diminished by half due to the amplitude

modulation, as only one of the terms in Eq. (37) will be
observed. Fig. 14 illustrates this with single-scan UF2DNMR
experiments carried out on a n-butylchloride/CDCl3 sample
[33], demonstrating the differences between amplitude- and
phase-modulated encodings. Higher signal intensity is observed
in the phase-modulated case when examining the 1D projec-
tions of the spectra on the frequency axes.
� The p

2 chirps are more sensitive to RF inhomogeneities compared
to the adiabatic p-chirps used in the other approaches.

The overall encoding time spent by the spins in the x̂ŷ-plane
also varies between methods, as revealed by comparing Eqs. (39),
(36) and (34) for the cases of constant-time, amplitude modulation
and phase modulation encoding, respectively. For a given z ordi-
nate, the constant-time encoding mode offers the highest effi-
ciency, followed by amplitude modulation and phase modulation.
This feature is desirable for the same reason as it is in conventional
2D spectroscopy: it allows for finer resolution along the indirect
domain for a given tmax

1 – even if at the expense of increased relax-
ation losses. Moreover, the use of long, constant field gradients like
those involved in Fig. 13 can introduce unwanted signal decay due
to diffusion. Alternating the gradient field can reduce these effects
[38], making the original discrete-based experiments (left outside
the scope of this review [7,8]) less susceptible to diffusion artifacts
than continuously modulated ones.

3.2. Decoding the information: 2D signals in a single acquisition

In spectroscopic experiments signals are collected as a function
of time variables, and the desired spectrum is obtained by means of
a numerical Fourier transform. In the cases that concern us here,
where the sample has been partitioned into spatial elements en-
coded with different degrees of spin evolution, one will eventually
have to acquire spectra from each of the spatial elements and dis-
criminate between them; that is, to obtain spectra as a function of
position. This is a form of spatial-spectral acquisition; the simplest
sequence that can be used to this effect is shown in Fig. 15.

The challenge just outlined is, in fact, analogous to problems of-
ten encountered in MRI, dealing with the acquisition of spatially
resolved images for sites with different chemical shifts. A single-
scan solution to this problem was first proposed by Mansfield with
Echo Planar Spectroscopic Imaging (EPSI) [39], in which signals are
acquired in the presence of an alternating field gradient. The field
gradient uncovers the position-dependent spin distribution; while
its alternations refocus the gradients effects, allowing the chemical
shift evolution to take place and modulate the signal. Hence, the
overall signal resulting from a single-scan has both position and
chemical-shift dependent interactions encoded into it.

Section 3.2.1 presents a heuristic overview of this acquisition
method as applied to spatially encoded data, with a more rigorous
formulation following in Section 3.2.2. In Section 3.3.5, EPSI will be
discussed in a more general setting, stressing its role as a tool for
recovering other types of spatial-spectral information from a
sample.

3.2.1. Spatial-spectral acquisition of spatially-encoded NMR
interactions

Consider the state just prior to acquisition of a set of spins hav-
ing some chemical shift X1 that was encoded spatially using any of
the schemes11 depicted in Fig. 13. Following the spatial encoding,
spins will reside within the x̂ŷ-plane and have a linear position-
dependent phase of the form12 MþðzÞ ¼ M0eıt1ðzÞX1 , where M0 is some
proportionality constant, t1ðzÞ ¼ Cz, and C depends on the encoding
method employed. Regardless of the details of the sequence, at the
conclusion of the spatial encoding process the spins can be visual-
ized as subtending a helix along the z-axis, similar to the one shown
in Fig. 2. The degree of winding in this helix, however, will not be
determined by an external gradient, but rather derive from the
CX1 coefficient: the greater the chemical shift, the more tightly
wound the helix. As in the case of a gradient-derived spiral, acquir-
ing a signal from this state would yield merely noise: the acquired
signal would be equal to the vectorial sum of signals originating
from all spins in the sample, sðtÞ /

R
sample MþðzÞdz. Because spins in

different regions of the sample point in different directions in the
x̂ŷ-plane, their signals would interfere destructively, canceling out
when added vectorially.13 Consider, however, what would happen
if a signal were to be acquired while applying a gradient. Given



Fig. 13. Different schemes discussed in this article for creating a different effective t1 evolution time in each slice. (a) Phase-modulated (PM) encoding. (b) Amplitude-
modulated (AM) encoding. (c) Constant-time (CT) encoding. The arrows before each chirped pulse indicate the sign of DO, the bandwidth, which determines the directionality
of the sweep (from negative to positive frequencies or vice-versa).
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enough time, this gradient could unwind the spins, and align the
spin packets constructively so as to form an echo. Applying the gra-
dient any longer would wind the aligned spins once again, causing
the signal to decay back into the noise.

This process is illustrated in Fig. 16 for two chemically inequiv-
alent sites. Mathematically, it can be understood from the fact that
during such an acquisition, the phases of the spins will evolve as
/aðtÞ ¼ CX1zþ cGatz ¼ ðCX1 þ cGatÞz. It is seen that the spins align
when14 CX1 þ cGat ¼ 0; that is, when techo ¼ � C

cGa
X1. The signal from

several chemical shifts is the superposition of signals from the indi-
vidual chemical shifts, so a sample containing n different chemical
shifts, Xð1Þ1 ;Xð2Þ1 ; . . . ;XðnÞ1 prior to mixing will form n echoes, at loca-
tions techo;j ¼ � C

cGa
XðjÞ1 . Note that, since the position of an echo is pro-

portional to X1, the acquired echo pattern will in fact be proportional to
the spectrum along the indirect domain.

The gradient’s action just described is completely reversible:
assuming no displacements, the spins can be rewound by following
14 In the event C is a positive quantity, Ga can be set to be negative, ensuring that
techo > 0 – that is, that the echo is indeed observed, provided one acquires for a time
greater than techo. For the purposes of the discussion in this section, it will be assumed
that Ga should be positive.
the positive gradient Ga with a negative one �Ga, having identical
magnitude and duration. This has the effect of reversing whatever
winding was induced during the positive gradient lobe: the phase
added by the positive gradient, cGaTaz, and the phase added by the
negative gradient, �cGaTaz, cancel out. Should a signal be acquired
in the presence of this negative gradient, the echoes will form
again, only in a reverse order, resulting in a pattern of echoes
which is the mirror image of the one acquired in the presence of
the positive gradient.

It would seem that – relaxation or diffusion notwithstanding –
this process can be repeated indefinitely, leading to an identical
train of echoes and their mirror images by alternating the gradi-
ent. This, however, would not take into account the fact that,
alongside the gradient-induced winding, the spins precess
according to their inherent t2-dependent chemical shifts. Hence,
the echoes emanating from each chemical site will get addition-
ally modulated by a term of the form eıX2t2 , representing its evo-
lution by the action of the direct-domain chemical shift X2 (see
Fig. 17a). This is the essence of the acquisition scheme: by acquir-
ing spatially encoded data in the presence of a gradient, one can
observe the indirect-domain spectrum; by oscillating the gradient
one can follow the eıX2t2 envelope modulating the indirect-domain



Fig. 14. Comparison between single-scan 2D TOCSY NMR spectra, acquired on a 500 MHz Varian iNova spectrometer, for an n-butylchloride/CDCl3 sample, utilizing the
amplitude-modulated (a) and the phase-modulated (b) pulse sequences indicated on top. Also shown for the sake of a sensitivity comparison are the projections obtained in
each instance upon adding up all points along the indirect dimension (shown in absolute intensity mode). The effective tmax

1 encoding times are 40 and 45 ms in (A) and (B),
respectively. Additional relevant parameters were gradient switching times of 10 ls, an L ¼ 1:8 cm sample length, and a 40 ms long DIPSI-2-type sequence applied in the
absence of gradients and over a 15 kHz bandwidth for the mixing. Also important to note are the cB1 settings used for the p

2 and p RF pulses: 200 and 1200 Hz, respectively.

Fig. 15. Echo Planar Spectroscopic Imaging (EPSI) sequence, used to acquire a different FID (or, equivalently, 1D spectrum) per position. In this sequence data are acquired
throughout the action of an alternating gradient, shown here explicitly by the black dots.

15 This is a distinction worth stressing: the purpose of a mixing sequence is to
transfer magnetization between coupled spins. Hence, spins having a chemical shift X1

will transfer their magnetization (and winding) to spins having some other chemical
shift X2; for instance, through couplings. Those spins would then precess during
acquisition with an off-resonance frequency given by X2. It is quite possible for X1 to
transfer its magnetization to several spins; in this case, the overall chemical shift
evolution will reflect a linear superposition of the individual evolutions. This
discussion will confine itself to a particular chemical shift, X2, along the direct domain.
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echoes; that is, the evolution along the direct domain. Thus, the
X1 � t2 plane can be covered, and a 2D spectrum acquired within
a single-scan, by Fourier processing of such data versus t2

(Fig. 17b–e).

3.2.2. Mathematical formulation of the gradient-driven decoding
During the process outlined in Fig. 17a, the acquisition phase of

a spin having a particular position z will evolve as a function of the
acquisition time t2, as:

/aðz; t2Þ ¼ CX1zþ kðt2ÞzþX2t2: ð40Þ
Notice the distinction between X1, the indirect-domain chemical
shift prior to mixing, and X2, the chemical shift following the mix-
ing.15 The variable kðt2Þ ¼ c

R t2
0 Gaðt0Þdt0, like the one introduced in



Fig. 16. Acquisition in the presence of a gradient for a sample containing two chemical shifts, Xð1Þ1 ;Xð2Þ1 . During spatial encoding, the spins are excited onto the x̂ŷ-plane and
wound up along the z-axis, in helices whose pitch is proportional to their respective chemical shifts. Once encoded, mixing is applied. Note that, since the mixing is not
spatially selective, their relative spatial phases do not change, and hence the winding is preserved. A gradient is then turned on and a signal is acquired. As the different
chemical shifts unwind they form echoes. Each chemical shift forms a single echo, at a time tðjÞ ¼ C

cGa
XðjÞ1 , when the spins associated with it align constructively. The total signal

is a superposition of the signals originating from the different chemical shifts. The time axis is hence seen to be proportional to the chemical shift prior to mixing, and the
pattern of echoes – to the indirect spectrum. (Note that the process portrayed here has been idealized – precession due to chemical shifts has been neglected, and the
encoding process is assumed to be ideal.)
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Section 2.1, is used to express the total area under the gradient up to
time t2. The value of kðt2Þ therefore increases and decreases period-
ically, with a period 2Ta, equal to two gradient lobes.

The signal sðt2Þ induced by the spins at a time t2 into the acqui-
sition is proportional to the vector sum of the projections of the
magnetization vectors in the sample on the x̂ŷ-plane. Written in
complex form, this is:

sðt2Þ /
Z L

2

�L
2

Mþðz; t2Þdz; ð41Þ

where Mþðz; t2Þ ¼ Mxðz; t2Þ þ ıMyðz; t2Þ ¼ M0eı/aðz;t2Þ, and M0 is pro-
portional to the sample’s concentration, which shall be assumed
constant. Given the simple form of Mþðz; t2Þ, Eq. (41) can be inte-
grated to yield:

sðk; t2Þ / LM0eıX2t2 sinc
ðCX1 þ kðt2ÞÞL

2

� �
: ð42Þ

Eq. (42) expresses formally the appearance of echoes illustrated in
Fig. 16. Note that, in accordance with Fig. 16:
1. The lineshape of the echo is given by a sinc function. This derives
from our assumption of a constant profile effective spatial
throughout. In actuality, T2 or diffusion related losses will mod-
ulate this profile leading to different, complex (e.g., dispersive)
lineshapes.

2. The location of the echo’s peak occurs when sinc ðCX1þkðt2ÞÞL
2

� �
is

maximal, that is, when CX1 þ k ¼ 0, or k ¼ �CX1. This quantity
depends solely on the spatial encoding and is proportional to
the chemical shift prior to mixing (see Table 2). The k-axis
therefore acts as the indirect-domain frequency axis, scaled
by C.

3. The width of the echo, when plotted as a function of k, will be
the width of the sinc function and given by � 1

L. When plotted
as a function of t2 it is 1

cGaL. And when considered in terms of

m1, its width is Dm1 ¼ jDk=Cj � 1
tmax
1

, where tmax
1 is the total encod-

ing time (see Fig. 13). The indirect-domain spectral resolution in
UF2DNMR is thus given by the inverse of the overall encoding
time, as in conventional spectroscopy.



Fig. 17. Ultrafast 2D acquisition protocol and post-processing. (a) The signal in an UF2DNMR experiment is acquired in the presence of an alternating gradient. The echoes
originating from the spins having a chemical shift X2 are modulated by eıX2 t2 . (b) The signal viewed in a 2D k� t2 space, where k ¼ kðt2Þ ¼ c

R t2
0 Gaðt0 Þdt0 . Note that kðt2Þ

represents the total area under the gradient and hence periodically increases and decreases as Ga flips sign. (c) To reach a final spectrum the positive (A and C) and negative (B
and D) gradient data sets are separated. (d) Each data set is Fourier transformed over its t2 coordinate, with the dwell time being 2Ta . (e) The data sets can then be co-added to
enhance the overall sensitivity.
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4. The echo is modulated by an envelope eıX2t2 , implying that
sðk; t2Þ is in fact an indirect-domain frequency/direct-domain
time 2D interferogram. Thus, all it requires is a realignment of
its data points and a Fourier transform along t2 to yield the
desired 2D NMR spectrum. Indeed, the periodicity of kðtÞ dis-
cussed earlier implies that kðt2 þ 2TaÞ ¼ kðt2Þ for all t2. In partic-
ular, computing the phase difference D/a between two peaks
separated by 2Ta gives:
16 Alth
also dep
D/a ¼ CX1zþ kðtecho þ 2TaÞ þX2ðtecho þ 2TaÞð Þ
� CX1zþ kðtechoÞ þX2techoð Þ ¼ X22Ta: ð43Þ
Thus, the echo peaks are modulated solely by the chemical shift
evolution during acquisition, independent of the gradient, as illus-
trated in Fig. 17a.

It is useful, for reasons that will become apparent shortly, to
think of k and t2 as independent variables.16 Each data point has
a particular value of ðk; t2Þ associated with it, and can therefore be
viewed as being acquired in the k� t2 space along a trajectory de-
fined by kðt2Þ, as shown in Fig. 17b. To implement the remaining
Fourier transform along t2, the data can then be separated and
rearranged into two sets (Fig. 17c). These data sets contain points ac-
quired during the positive and negative gradient lobes, respectively,
and they are separable in the sense that their rows are proportional
ough k depends on t2 it can be viewed as an independent variable, since it
ends on GaðtÞ, which can be varied independently of t2.
to the spectrum along the indirect domain, while their columns – all
of whose points are a 2Ta dwell-time apart – are modulated solely by
the post-mixing chemical shifts X2 (Eq. (43)). Fourier transforming
over the columns (the t2 axis) at this point yields the direct-domain
spectrum, and hence the desired 2D spectrum being sought
(Fig. 17d). These two data sets, containing in principle identical 2D
spectral content, can be subsequently phased, re-registered (this
would account for gradient and sampling non-idealities) and com-
bined for the purpose of enhancing the sensitivity.

3.3. Practical considerations in ultrafast 2D NMR

Any two-dimensional spectrum involves a set of parameters,
including the full widths at half height (FWHH) Dmi ði ¼ 1;2Þ of
the peaks, the covered spectral widths SWi ði ¼ 1;2Þ, as well as
the signal-to-noise ratio (SNR), that define the overall quality and
ability of a method to discern the spectral information. The current
section takes a closer look at these quantities in single-scan 2D
NMR, and discusses additional issues such as the line shapes and
the use of purge gradients to shift the indirect-domain spectrum.
In what follows, SWj will be used for describing the spectral widths,
Dmj for the peaks’ FWHH, Ni ¼ SWi

Dmi
; dtj for the dwell time and tmax

j for
the maximal acquisition time along the indirect ðj ¼ 1Þ and direct
ðj ¼ 2Þ acquisition domains (t1 and t2, respectively).

3.3.1. Spectral characteristics
We survey next explicit expressions for the spectral width and

resolution, SWj;Dmj, along the indirect ðj ¼ 1Þ and direct ðj ¼ 2Þ



Table 2
Coefficients defining the spins’ phase following spatial encoding (Eq. (44)).

C b a1 a0

Amplitude-mod.a � tmax
1
L

0 tmax
1
2

� p
2

Phase-mod.b tmax
1 �3TðpÞ

L
cG

p
2ð ÞT p

2ð Þ
2

� T
p
2ð Þ

2 � cG
p
2ð ÞT p

2ð ÞL
4

Constant-timec �2tmax
1

L
0 0 0

a The frequency sweep of the chirp is assumed symmetric and set to DO ¼ cGeL.
b The variable tmax

1 has been used to denote to total encoding time. For amplitude
modulation, it equals T

p
2ð Þ; for constant-time encoding, it equals TðpÞ .

c For phase encoding, T
p
2ð ÞG

p
2ð Þ ¼ 2TðpÞGðpÞ.
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axes. In conventional 2D NMR data are sampled in the t1 � t2 plane,
and SWj;Dmj are determined by the sampling rates and time spans,
as dictated by Nyquist’s theorem [40]: SWj ¼ 1

dtj
;Dmj ¼ 1

tj;max
, where

dtj is the dwell time and tj;max is the maximal sampling time along
the tj-axis. Data in UF2DNMR is not acquired in the t1 � t2 plane,
but rather along k=m1 � t2. As seen in Section 3.2, the data along
the t2 axis is modulated solely by the chemical shift, with a dwell
time of 2Ta and a maximal acquisition time 2N2Ta, where N2 is the
number of gradient repetitions. Hence, the resolution along the t2

axis after its Fourier transform, is given by SW2 ¼ 1
2Ta
;Dm2 ¼ 1

2N2Ta
.

The k-axis is proportional to the indirect-domain’s frequency axis,
m1, with a proportionality constant given by C - the spatio-temporal
coefficient summarized in Table 2. As discussed in Section 3.2.2,
the width of a k-domain echo arising from a sample length L will
be given by 1

L, while the maximal k-value that will be monitored
will be given by kmax ¼ cGaTa. Dividing these quantities by C yields
the desired spectral width and resolution obtainable in units of fre-
quency: SW1 ¼ j kmax

C j;Dm1 ¼ ½ 1CL j. These findings are summarized in
Table 1 for the various spatial-encoding methods discussed in this
review.

3.3.2. Practical aspects of spatial encoding
The discussion in Section 3.2 assumes an ideal spatial encoding;

i.e., spins endowed with a phase CX1z just prior to acquisition. In
practice, additional terms may appear as well. The most general
form for the phase resulting from the spatial encoding reads:

/eðz;X1Þ ¼ CX1zþ bzþ a1X1 þ a0; ð44Þ

where b; a1; a0 are independent of X1 and z. Table 2 summarizes the
values of these constants for the three encoding methods discussed
in Section 3.1.

The presence of the terms b; a1; a0 and their implications war-
rant further discussion. The constant phase eıa0 affects all peaks
in the spectrum identically, and can be compensated for by using
conventional zero-order phasing methods. The linear term bz,
shared equally by all indirect-domain chemical shifts, will uni-
formly shift the echo pattern acquired along the k-axis. It repre-
sents an additional winding of the spins along the z-axis; hence
it behaves spectrally as a uniform indirect-domain offset shift. This
can be seen formally by writing down the phase during the
acquisition:

/aðk; t2Þ ¼ /eðz;X1Þ þ kzþX2t2

¼ /eðz;X1Þ þ ðkþ bÞzþ a1X1 þ a0 þX2: ð45Þ

The variable k, and hence m1, to which it is proportional, is shifted in
Eq. (45) by an amount �b. Since the exact dependence of b on the
experimental parameters is known, it is possible to do away with
it completely by applying a purge gradient Gp for a time Tp before
beginning the acquisition, such that cGpTp ¼ �b [29]. In general,
pre-acquisition purge gradients can also be used to shift the echoes
– and hence the indirect-domain spectrum – by an amount
Table 1
Spectral characteristics in UF2DNMR experiments.

SW1 N1 Dm1

Spatial-encodinga kmax
C

Lkmax 1
CL

Constant-time cGaTaL
2Te;tot

1
2Te;tot

Amplitude-modulation cGaTaL
Te;tot

1
Te;tot

Phase-modulationb SW1 1

T
p
2ð Þ�TðpÞ

Conventional 1
dt1

t1;max
dt1

1
t1;max

a If the positive and negative gradient data sets are interlaced [76], SW2 can be doub
b Assuming 2GðpÞTðpÞ ¼ G

p
2ð ÞT p

2ð Þ .
Dk ¼ cGpTp; this can also be thought of as shifting the origin of
the k-axis by an amount �Dk ¼ cGpTp. The need to reposition the
offset of the variable k can arise in several situations. The reliance
on amplitude modulation of X1 values might result in echoes that
appear at negative k-values, and hence would not be observable
using the trajectory in k� t2 space appearing in Fig. 17b. By shifting
the origin of the k-axis one can ensure the entire pattern fits within
the window k 2 ½0; kmax� � ½0; cGaTa�. The precise calibration of this
shifting includes choosing a proper point where to insert Gp in the
sequence, and may need to be fine-tuned by performing an arrayed
experiment – for instance, incrementing Gp and observing the echo
pattern in a reference sample. Also important, pre-acquisition purg-
ing is often an essential requirement for eliminating axial artifacts
of the experiment, as well as for coherence selection pruposes.

Two additional parameters pertaining to the spatial encoding
process and deserving mention are the gradient Ge and the chirp
bandwidth DO. In the presence of a field gradient Ge, spins having
a chemical shift X1 will span a range of frequencies ranging from
X1 � cGeL

2 to X1 þ cGeL
2 , where L is the physical size of the sample

(see Fig. 18). Since the sample contains many spins with differing
chemical shifts, it is impossible to tailor the bandwidths DO to ex-
cite them all perfectly; there will always be either frequency re-
gions which do not get irradiated (leading to a partial excitation
of the spins and to diminished signal intensity), or frequency re-
gions which are irradiated but contain no spins (leading to a site-
dependent non-uniform t1ðzÞ). These regions can, however, be
minimized, provided DO ¼ cGeL� SW1, where SW1 is the spectral
width of the indirect domain – that is, the spread of chemical shifts
prior to mixing. A typical value of SW1 for protons is 5 kHz, so, for a
standard 20 mm sample,

G� 1
2

kHz
mm

� 1
Gauss

cm
; ð46Þ

suggesting a minimal value of 10 Gauss/cm for Ge. Increasing Ge be-
yond such values would only serve to introduce losses and distor-
tions due to molecular diffusion [41,42].

3.3.3. Line shape considerations
The two-dimensional spectrum acquired in UF2DNMR has a

distinct asymmetry built into it: the indirect k � m1 spectral axis
SW2 N2 Dm2

1
2Ta

Number of gradient repetitions 1
2TaN2

1
dwell time

Number of acquired points 1
Tacquisition

led, SW2 ¼ 1
Ta

, without affecting any other experimental parameters.
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is monitored via gradients leading to the formation of echoes,
while the direct spectral axis is obtained by observation of the
chemical shift modulation of those echoes with an effective dwell
time of 2Ta and total acquisition time of 2N2Ta. As a result, the di-
rect domain displays all of the characteristic traits of a conven-
tional Fourier transform NMR spectrum, in terms of the spectral
width ðSW2Þ, resolution ðDm2Þ and the control of its central carrier
offset. Yet the novelty of the spatially-encoded indirect domain de-
serves a more in-depth analysis.

The form of an echo along the k (indirect) axis is given by Eq.
(42). Its width is 1

L when viewed as a function of k, or 1
CL when

viewed as a function of m1. Its magnitude at peak intensity is
M0L, up to a constant depending on the geometry of the coil and
the electronic properties of the receiver and console (and therefore
shared equally by all experimental schemes). The assumption
made in the derivation of Eq. (42) was an excitation phase of the
form of Eq. (44), with a0 ¼ a1 ¼ b ¼ 0. According to the discussion
in the previous section, there is no loss of generality in assuming
b ¼ a0 ¼ 0, but a1 must be taken into account, yielding the follow-
ing general form for the echoes:

sðk; t2Þ / LM0eıX2t2 sinc
ðCX1 þ kðt2ÞÞL

2

� �
eıa1X1


 �
; ð47Þ

a1 therefore behaves as a first-order phase distortion along the indi-
rect domain. Though a-priori known, correcting for this kind of dis-
tortion can be challenging. Further challenges arise upon including
the effects of T2 relaxation which have been so far neglected. In
actuality we recall that a single 1D spectroscopy experiment yields
a signal of the form

sðtÞ ¼ eı2pmcst� t
T2 if t P 0

0 otherwise:

(
ð48Þ

When Fourier transformed, this yields the well known Lorentzian
spectral line shape:

IðmÞ ¼ T2

1þ ð2pT2ðmcs � mÞÞ2
þ ı

2pT2
2ðmcs � mÞ

1þ ð2pT2ðmcs � mÞÞ2
� AðmÞ þ ıDðmÞ;

ð49Þ

where the real and imaginary parts, AðmÞ and DðmÞ, are the absorp-
tive and dispersive parts of the spectrum. The appearance of a dis-
persive component DðmÞ is due to sðtÞ’s asymmetry about t ¼ 0. In
1D NMR this is not an insoluble complication, as sðt < 0Þ and
Fig. 18. In practical applications, a chirp’s bandwidth is chosen to span the entire
sample, DO ¼ cGeL, where L is the sample’s physical size. However, spins with
different chemical shifts will span slightly different frequency ranges, leading to
both wasted time (during which no spin is irradiated) and spins which are never
excited in the sample. To minimize these effects, one chooses Ge such that
DO� SW1, where SW1 is the spectral width along the indirect domain.
sðt > 0Þ are related, and hence the effects of DðmÞ can be compen-
sated. The presence of a dispersive component is known to be more
problematic in 2D spectroscopy [55]. If data are acquired along po-

sitive t1 and t2 axes, sðt1; t2Þ ¼ eıX1t1�
t1
T2
þX2t2�

t2
T2 for t1; t2 P 0, and the

corresponding 2D spectrum becomes the product of the individual
lineshapes along both axes. Extending Eq. (49), this means:

Iðm1; m2Þ ¼ Aðm1Þ þ ıDðm1Þ½ � Aðm2Þ þ ıDðm2Þ½ �
¼ Aðm1ÞAðm2Þ � Dðm1ÞDðm2Þ½ �
þ ı Aðm1ÞDðm2Þ þ Dðm1ÞAðm2Þ½ �; ð50Þ

both the real and imaginary parts of the spectrum thus become
entangled. The resulting peaks, plotted in the m1 � m2 plane, exhibit
a phenomenon known as phase twisting. One could use the absolute
magnitude of Iðm1; m2Þ, but this leads to a loss of resolution, as well
as to peak cancellation problems (Fig. 19a). A solution of this dilem-
ma stems from the realization that the indirect t1 variable does not
involve physical time, and therefore by suitable manipulations of
equivalent negative t1 values may be sampled as well (e.g., by col-
lecting echo/anti-echo 2D sets). The resulting Fourier transform

along the t1 axis, Iðm1Þ, will then involve transforming eı2pmcst1�
jt1 j
T2 over

a symmetric domain, t1 2 ½�t1;max; t1;max�, as opposed to
t1 2 ½0; t1;max�. As the Fourier transform of a symmetric function over
a symmetric domain is real, the resulting lineshape will have no
imaginary part: D1ðm1Þ ¼ 0, and as a result

Iðm1; m2Þ ¼ Aðm1ÞAðm2Þ þ ıAðm1ÞDðm2Þ: ð51Þ

The real part of the spectrum has thus lost the twisted phase. An-
other option is offered by constant-time acquisitions: indirect
domain relaxation effects will then produce a uniform, t1-indepen-
dent signal loss. While associated with a SNR penalty, this avoids
the e�

t1
T2 modulation and the introduction of dispersive components

along m1. One can summarize this by saying that twisted peaks
appear in conventional 2D NMR as a result of both the indirect
and direct domain having progressive relaxation effects; this can
be remedied by sampling the t1 indirect domain symmetrically
vis-a-vis T2 decay, or by having a uniform T2 decay for all t1 values.
Either of these yields 2D peaks for which Dðm1Þ ¼ 0.

The known arguments just stated can be extended to the single-
scan case, with the provision of replacing t1-related concepts with
z-related ideas. Indeed, UF2DNMR acquires its 2D data set in the
k� t2 plane. The considerations outlined above readily apply to
the t2, direct-domain axis, which is sampled and Fourier trans-
formed in the conventional sense and hence will contain a disper-
sive Dðm2Þ component. Analogously to the conventional 2D case,
the indirect-domain spectrum arises as a result of an analog FT
along the z-axis (e.g., the outer integral in Eq. (64)). Its k-axis echo
pattern will therefore have a dispersive component as well, so long
as the different slices along the sample have not been encoded
symmetrically about z ¼ 0. The appearance of a progressive
z-dependent T2 decay is illustrated for the case of amplitude-mod-
ulated encoding (Section 3.1.2) in Fig. 19b. As different slices are
excited and stored at different times, each slice will be affected
differently by relaxation while in the xy-plane, forming a spatial
relaxation envelope. Formally, one would have, at the end of the
encoding, a spatial spin distribution in the Bloch sphere of the form

MþðzÞ ¼ M0eıt1ðzÞX1�
t1 ðzÞ
T2 , where t1ðzÞ ¼ Cz. This is analogous to the

conventional t1 effect described above, and the shapes of the
resulting echoes, given by

sðt2Þ ¼
Z

MþðzÞdz ¼
Z

M0et1ðzÞX1�
t1 ðzÞ

T2 dz; ð52Þ

will have a dispersive component by virtue of the asymmetry of
MþðzÞ. A possible solution to this problem includes the use of
encoding schemes, such as constant-time encoding, in which all



Fig. 19. (a) The absolute magnitude of data sampled in the t1 � t2 plane. Left: sampling just one quadrant of the t1 � t2 plane results in dispersive components along both axes
and, hence, twisted phase. Right: the resolution is to sample the t1 axis symmetrically, eliminating the dispersive component along m1. (b) In UF2DNMR, amplitude-modulated
encoding leads to different slices residing in the xy-plane for different amounts of time, creating an asymmetrical spatial decay envelope, leading to a dispersive component
along the acquisition’s k-axis. (c) One possible resolution is to use constant-time encoding, in which all slices spend the same amount of time in the xy-plane, and are equally
affected by T2, leading to a symmetric spatial profile. (d) Another solution is to use the two phases arising in an amplitude-modulated encoding, and conduct one or two
experiments that observe spatially the two terms in Eq. (37), which result in data sets along the k-axis with inverted dispersive components.
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slices remain in the x̂ŷ-plane for the same amount of time (this is
illustrated in Fig. 19c). Another option is shown in Fig. 19d; it relies
on the fact that, when the spins are stored, two spatial mirror-
images of the spin distribution – akin to the echo/anti-echo modu-
lations mentioned earlier – are retained. These can be distinguished
during the acquisition (Eq. (37)). One of the terms can be observed
by monitoring the positive k-values, while the other can be ob-
served by monitoring the negative k-values. This can be achieved
in two separate experiments with inverted gradient patterns [22],
as shown in Fig. 19d; alternatively, they can be monitored in a sin-
gle scan, at the expense of shifting the whole pattern and doubling
the kmax range. Regardless of the route, each resulting data set will
have dispersive components along the k-axis, equal in magnitude
but opposite in sign. Adding them up ensures the indirect-domain
echoes are purely absorptive – mimicking the conventional 2D case.
In addition, options that find no direct counterpart in conventional
2D NMR may arise in the spatially-encoded experiments. These in-
clude, for example, the use of symmetric encoding schemes, such as
those discussed in [30].

In addition to these encoding-related phase distortions and cor-
rections, the presence of the X2t2 phase in Eq. (49) is a general fea-
ture of the indirect-domain acquisition. As data is acquired along a
skewed trajectory which is not parallel to the k-axis (see Fig. 17b),
time-delays and first-order phase distortions will be present. But
no special considerations related to the lineshapes along m2 will
arise.

3.3.4. Signal to noise
Signal-to-noise ratio (SNR) is a key practical aspect when con-

sidering the implementation of a UF2DNMR experiment. Indeed,
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the fact that all the information pertaining to Iðm1; m2Þ can be gath-
ered in a single-scan does not mean that such a speed-up will be
possible: only if the SNR is sufficiently good will this be the case.
Should the SNR be insufficient, signal averaging would be an option
– yet an unappealing one if the number of scans that needs to be
averaged approaches the number of N1 increments in a conven-
tional acquisition. We thus devote this section to a discussion of
the SNR in UF2DNMR experiments.

NMR sensitivity is usually defined as the ratio of the height of a
spectral peak divided by the root-mean-square (rms) of the sur-
rounding noise. It is convenient to compute this quantity using a
discretized version of the signal; this offers no loss of generality,
even without taking into account that the signals are indeed digi-
tized and sampled before being stored. Moreover, it is illustrative
to first review SNR issues in conventional 1D NMR, as these notions
can then be extended and used to compare the SNR of single-scan
and conventional 2D NMR spectroscopy.

The digitized signal from a basic pulse-acquire 1D experiment
carried out on a sample having a single chemical shift X and a mag-
netization per unit length M0 is:

sj ¼ sðjdtÞ ¼
Z

dzM0eıXjdt�jdt
T2 for j ¼ 0;1;2;3; . . . N � 1; ð53Þ

where dt is the dwell time, the integral sums up the contributions
from all the spins in a sample of length L, and N is the number of
acquired points, taken to be large enough for the signal to decay be-
low the noise level. For the purpose of calculating the SNR, it can be
assumed without loss of generality that X ¼ 0 (the signal intensity
will not depend on the chemical shift, which merely displaces the
peak without altering its form). Fourier transforming sj, one obtains
the discrete spectrum17:

ŝk ¼
1ffiffiffiffi
N
p

XN�1

j¼0

sje
2pıjk

N ¼ LM0ffiffiffiffi
N
p 1

1� e�
dt
T2 e

2pık
N

for k ¼ 0;1;2; . . . ;N� 1:

ð54Þ

The maximum of ŝk, corresponding to the peak’s maximum inten-
sity, occurs for k ¼ 0, at which point ŝ0 ¼ 1= 1� e�

dt
T2

� �
. Expanding

in the small quantity dt=T2, the intensity of the peak becomes:

ŝmax ¼
LM0ffiffiffiffi

N
p T2

dt
�

ffiffiffiffi
N
p

LM0; ð55Þ

where it has been assumed that the total acquisition time, tmax, has
been set on the order of T2. As a result, T2=dt � Ta=dt ¼ N. Different
decay envelopes may change Eq. (55) by a factor on the order of
unity.

To complete the evaluation of the SNR, the noise in the fre-
quency domain must be evaluated. Let n0; n1; n2; . . . ;nN�1 denote
the noise sampled in the time-domain, and let

nrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN�1
p¼0 jnpj2

q
be its root-mean-square. It can be shown,

using the properties of the discrete Fourier transform, that the
rms of the noise in the frequency domain, n̂rms, is equal to its rms
in the time-domain:

n̂rms ¼
ffiffiffiffiffiffiffiffiffi
nrms
p

: ð56Þ

As a result,

SNR1D ¼
ffiffiffiffi
N
p

LM0

n̂rms
¼

ffiffiffiffi
N
p

LM0

nrms
: ð57Þ

Two remarks should be made about this expression. (i) The SNR is
proportional to

ffiffiffiffi
N
p

, the number of acquired points. This can be
thought of as a form of built-in signal averaging; (ii) Although the
17 A symmetric definition of the discrete Fourier transform is employed:
ŝk ¼ 1ffiffiffi

N
p
PN

j¼1sje
2pıjk

N , which implies sj ¼ 1ffiffiffi
N
p
PN

k¼1 ŝje�
2pıjk

N .
precise form of the noise depends on the electronics of the system
(a detailed analysis of which is beyond the scope of this review) it
will be noted that nrms will in general depend on the sampling fil-
ter’s bandwidth (fbw). Indeed, before being digitized, signals are
passed through a low pass filter, removing any frequencies above
a certain threshold. The value of fbw is often set equal to the spec-
tral width of the sample, so as to ensure that high-frequency noise
components do not get folded into the observed spectral range. It is
possible to show that nrms scales as

ffiffiffiffiffiffiffiffiffi
fbw
p

; for example, doubling the
observed spectral width, and hence the filter-bandwidth, increases
the noise by

ffiffiffi
2
p

.
A conventional 2D experiment consists of an array of N1 1D

experiments. The SNR of each experiment in the array is given by
Eq. (57). Assuming N is replaced by N2, the number of points ac-
quired along the direct domain, a second Fourier transform along
the indirect domain will then increase the SNR by an additional
factor of

ffiffiffiffiffiffi
N1
p

(the noise rms remains unchanged, and physical fac-
tors M0; L only apply to the directly sampled direct domain – i.e.,
the indirect domain’s signal is not M0LeıX1t1 but rather eıX1t1 ). Thus,

SNR2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2
p

LM0

nrms
: ð58Þ

It is seen that the SNR increases as the number of experiments N1 is
incremented – yet another form of signal averaging built-in into the
conventional 2D NMR scheme.

In UF2DNMR spectroscopy, one deals with a single transient,
and a meaningful comparison would compare the SNR per scan,
i.e., setting N1 ¼ 1 in Eq. (58). According to Eq. (47), the maximum
amplitude of an echo is M0L. Hence, for the indirect spectrum the
signal to noise is:

SNRecho ¼
LM0

nrms
: ð59Þ

Fourier transforming UF2DNMR data along the t2-axis increases the
SNR by a factor of

ffiffiffiffiffiffi
N2
p

, where N2 is the resolution along the direct
domain and is equal to the number of gradient repetitions in the
EPSI sequence. This is analogous to the Fourier transform taken
along the t2-axis in the conventional 2D case, and the resulting
SNR is:

SNRUF ¼
ffiffiffiffiffiffi
N2
p

LM0

nrms
: ð60Þ

Comparing Eqs. (58) and (60) suggests that, on a per scan basis,

SNR2D

SNRUF
¼ nUF

rms

n2D
rms

: ð61Þ

Still, it is erroneous to conclude that the noise levels are identical in
both cases. In the conventional experiment, the highest frequencies
of interest are those present in the spectral width along the direct

axis, SW2, to which the filter bandwidth, fbw2D, is set. In contrast,
in UF2DNMR one acquires echoes given by Eq. (47) spanning a fre-

quency range of � cGaL (Fig. 21). The corresponding fbwUF must
therefore be set to at least cGaL, to ensure the echoes do not distort.
From Table 1, we have cGaL ¼ cGaTaL

Ta
¼ 2N1SW2, and thus:

SNR2D

SNRUF
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fbwUF

fbw2D

s
¼

ffiffiffiffiffiffiffiffiffi
2N1

p
: ð62Þ

where in essence N1 is the number of spectral elements in the sin-
gle-scan experiment along the indirect-domain. Eq. (62) indicates
that, per scan, UF2DNMR suffers a �

ffiffiffiffiffiffi
N1
p

penalty in its SNR vis-a-
vis conventional NMR. This is arguably UF2DNMR’s main handicap,
and emphasizes that these methods will work best when applied to
problems where sensitivity is not a defining concern.



Fig. 20. A schematic view of EPSI (note the axes have been tilted by 90� to facilitate the display of information). Once the acquired data has been arranged in a matrix (a), it
can be Fourier transformed about the k-axis to yield the FID from each slice (b). A second Fourier transform recovers the spectrum from each slice (c), and a third – the 2D
spectrum. Alternatively, a single Fourier transform over the t2 axis can be used to obtain the 2D spectrum directly (d).

Table 3
Single-scan spatial-spectral acquisition: parameter relations.

To set . . . Set . . . to

SW2 The direct domain’s spectral width Ta The duration of the acquisition gradient’s lobe 1
2SW2

Dm2 The spectral resolution along the direct domain N2 The number of oscillations of the acquisition gradient 1
2TaDm2

SW1 The indirect domain’s spectral width Ga The acquisition gradient CSW1
cTa

Dm1 The spectral resolution along the indirect domain t1
max ¼ CL The effective encoding time (see Eqs. (34), (39), (36)) 1

Dm1
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3.3.5. A formal view of EPSI
We have previously emphasized the use of oscillating acquisi-

tion gradients to acquire spatial-spectral information indepen-
dently and simultaneously from different slices in the sample. It
is interesting to reformulate this acquisition block at an even more
fundamental level than that presented in the previous sections;
one which highlights its general applicability, in agreement with
the parallelization principle laid out at the beginning of this work.

Spins precessing in the transverse plane with a chemical shift
X2 and position z before commencing acquisition will, when sub-
jected to the EPSI module in Fig. 15, give rise to a signal of the
form:

sðk; t2Þ / eıðkðt2ÞzþX2t2Þ: ð63Þ

In order to describe a spatially-encoded sample, a generic distribu-
tion in the x̂ŷ-plane as a function of position and chemical shift,
Iðz;X2Þ, must be taken into account. Iðz;X2Þ is proportional to
Mþðz;X2Þ, and so:

sensembleðk; t2Þ /
Z

dz
Z

dX2Mþðz;X2Þssingleðk; t2Þ

¼
Z

dz
Z

dX2Mþðz;X2Þeıkðt2ÞzeıX2t2 : ð64Þ
The signal, acquired in k� t2 space, is seen to be the Fourier-conju-
gate of Mþðz;X2Þ; that is, Fourier transforming the signal sðk; t2Þ
along its two variables will yield Mþðz;X2Þ. In actuality,
sensembleðk; t2Þ is a discrete data set sampled at only specific points
in the k� t2 plane, and as such it is subject to all the constraints
encountered when sampling a function. Furthermore, to avoid
non-regular sampling intervals, one can choose just those points ac-
quired during the positive (or negative) gradient lobes, as was
shown in Fig. 17c. It follows from this that Mþðz0;X2Þ, for a fixed
z0, represents the spectral distribution of spins in the slice whose
position is z0. Carrying out a Fourier transform over X2 would then
naturally deliver the free induction decay for each z0 slice. This rea-
soning is illustrated in the bottom panel of Fig. 20.

This general understanding of EPSI can also be used to deduce
why a single Fourier transform over the t2 variable is needed to re-
cover a 2D spectrum in a UF2DNMR experiment. In conventional
spectroscopy, one executes several experiments, varying the delay
along the indirect t1 domain between each experiment; data is
then acquired along the direct t2 axis. Consequently, one needs
to Fourier transform the resulting 2D data set along both axes, t1

and t2, to recover the 2D NMR spectrum. UF2DNMR works by
parallelizing this notion, replacing the t1 domain by the z-axis.
One can, by Fourier transforming the EPSI-acquired data over the
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k variable, recover the FID of each experiment. This data set, in the
z� t2 plane, is analogous to the data set conventionally acquired in
the t1 � t2 plane (Fig. 20b). It remains to Fourier transform this set
against its two variables – z and t2 – to recover the 2D spectrum, as
shown in Fig. 20d. This is equivalent to a single Fourier transforma-
tion of sðk; t2Þ along the original t2 axis.

It is clear from the above discussion that the z� m2 plane is Fou-
rier paired to the k� t2 plane, and as such, the range and resolution
viewable along the z; m2 axes is determined by the familiar Nyquist
sampling relations. Still, as already mentioned, a distinction should
be drawn between the direct m2 domain, whose resolution depends
solely on the acquisition parameters Ta and N2, and an indirect m1

domain, whose resolution depends on the particular form of spatial
encoding used during t1. Indeed, in ultrafast 2D NMR, where spins
are assigned a z-dependent t1 evolution, the particular form of
t1 ¼ t1ðzÞ ¼ Cz will in turn define the k=m1 characteristics for each
encoding scheme (Fig. 13). Given C and the sample size L, the
EPSI-described Nyquist sampling relations can thus be used to
compute the desired spectral characteristics as a function of the
experimental parameters. These results are summarized for conve-
nience in Table 3.
3.3.6. Examples
With the theory underlying UF2DNMR outlined, this section

summarizes illustrative examples of spectra acquired using it.
Fig. 22 demonstrates the viability of UF2DNMR on an 15N ubiquitin
sample, comparing the resulting HSQC spectrum to one acquired
using conventional 2D spectroscopy. It is seen that all essential fea-
tures are retained in the single-scan version. As discussed in Sec-
tion 3.3.3, phasing issues arise in UF2DNMR; for this reason, the
absolute magnitude of ultrafast spectra (instead of the real part)
is usually used in those biomolecular applications. This leads to im-
paired resolution along both axes by a factor of

ffiffiffi
3
p

. Still, Fig. 23
demonstrates the ability of UF2DNMR to acquire spectra spaced
at under a second, and utilize them to monitor a chemical process
in real-time [43].

Fig. 24 shows how, by suitably altering the spatial encoding
protocol, various interactions can be suppressed and others al-
lowed to evolve along the indirect domain [33]; specifically, the
chemical shift evolution during encoding was refocused, while
the J-coupling was allowed to evolve. This was achieved by
phase-modulating the spins (see Section 3.1.2), equating the gradi-
ents of both chirps while applying the p

2 pulse for twice as long as
the p-chirp. The resulting spatio-temporal coefficient C then be-
comes null, voiding any chemical shift evolution along that axis,
Fig. 21. Filter bandwidth settings in conventional 2
while allowing for the J-coupling – unaffected by the p-pulse –
to continue evolving.

Recent advances have also been made in applying UF2DNMR in
conjunction with modern hyperpolarization methods [44,45]. The
signal from the hyperpolarized nuclei, while large, decays rapidly
with a time constant T1, the magnitude of which is governed by
spin-lattice relaxation and is on the order of a second. Since hyper-
polarizing a sample may take hours, a full 2D spectrum may take
days to complete. The single-scan, sub-second nature of UF2DNMR
becomes particularly appealing in making the best use of this en-
hanced signal. Several results are displayed in Fig. 25.
4. Spatial-spectral single-scan spectroscopy

The parallelization lying at the heart of UF2DNMR is made pos-
sible by the use of chirped RF pulses, that excite spins onto the
transverse plane and endow them with a phase /ðz; mÞ ¼ Cmz. Such
manipulation can be viewed as part of a larger superset of spatial-
spectral pulses, which allow one to excite an arbitrary phase pat-
tern in a position-frequency ðz� mÞ 2D space [46,47]. This section
discusses how, by generalizing these reasonings (Fig. 26), the con-
cept of parallelization can be extended to paradigms other than the
single-scan UF2DNMR experiments just described. We begin this
discussion on extending the UF2DNMR paradigm by focusing on
Hadamard spectroscopy [48–52].

4.1. Conventional Hadamard spectroscopy: a review

In a standard 2D NMR experiment, one applies a mixing se-
quence which transfers magnetization between sites based on par-
ticular interactions that exist between them (Fig. 27a). Since many
frequencies are present in the sample prior to mixing, the basic
experiment must be repeated for many t1 values: at least
N1 ¼ SW1=Dm1, to properly resolve all sites over a bandwidth
SW1 with a minimal resolution Dm1. These experimental results
are then arranged in a 2D matrix and Fourier transformed over
both axes, yielding a 2D spectrum in the m1; m2 domain.

As N1 will be given by local spectral characteristics – e.g., the
closest two peaks defining Dm1 and the farthest SW1, regardless of
where the remaining sites appear – one can envision a simple
alternative to this completely general scheme: instead of exciting
all chemical sites simultaneously and monitoring their time-do-
main evolution, one could use a selective soft pulse to excite each
particular chemical site, ma, as depicted in Fig. 27b. This would en-
tail knowledge of the 1D spectrum prior to the 2D experiment, as
D versus single-scan ultrafast spectroscopies.
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Fig. 22. A comparison between UF2DNMR and conventional 2D HSQC NMR spectra recorded at 18.8 T on a 3.25 mM 15N-enriched ubiquitin sample dissolved in 90/10%
H2O=D2O (courtesy of Dr. Maayan Gal, Weizmann Institute).

18 Signal-averaging N experiments increases the signal-to-noise ratio by a factor offfiffiffiffi
N
p

[55].
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one would have to know which frequency to irradiate. But since
this scheme allows one to investigate only those lines of the 2D
spectrum that are of interest, one could dramatically reduce the
number of experiments required for cases where both large band-
widths and high spectral resolutions are needed, thus speeding up
the 2D acquisition. Indeed, in these selective-excitation experi-
ments the t2 domain would include only frequencies originating
from ma prior to mixing. Fourier transforming this data would
yield the m1 ¼ ma line from the full 2D spectrum. Each selective-
excitation experiment then yields a particular m1 line of the full
2D spectrum. This approach liberates one from the need to dis-
cretely sample the t1 axis with a fine enough resolution: the res-
olution along the m1 axis will be determined only by the width of
the soft excitation pulse, which is inversely proportional to its
duration.

The above scheme suffers from a signal-to-noise penalty, in the
sense that in each iteration only a single peak is excited. Contrast
this with conventional 2D spectroscopy, in which all peaks are ex-
cited simultaneously. It is possible to find a solution to this draw-
back [50], by exciting all peaks of interest simultaneously but with
different phases. This approach relies on a mathematical construct
named Hadamard matrices [53] – hence the method, illustrated in
Fig. 27c, is referred to as 2D Hadamard NMR.

A Hadamard matrix H of order N is an N 	 N construct that
satisfies HHT ¼ NI, where I is the identity matrix. The Hadamard
Conjecture [54] states that Hadamard matrices of order 4k exist
for all positive integers k. Hadamard matrices of orders 2 and 4
are:

H2 ¼
1 1
1 �1

� �
; H4 ¼

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

0BBB@
1CCCA; ð65Þ

2D Hadamard spectroscopy’s approach is best illustrated via an
example. Suppose there are four frequencies of interest,
ma; mb; mc; md, along the m1 axis. Four experiments are then carried
out; in the kth experiment, all four peaks are excited, each peak
with a phase of either 0 or p, in a pattern that corresponds to the
kth row in the Hadamard matrix (Fig. 28a). The resulting four FIDs
are then subtracted and added from each other in a pattern that
once again follows the rows of the Hadamard matrix (Fig. 28b).
The output of this is four 1D data sets, with the kth data set equiv-
alent to the FID collected from an experiment in which a single fre-
quency mk has been selectively excited, but with a

ffiffiffi
4
p

increase in
signal to noise. This increase stems from the four experiments,
which were added in such a way that one peak gets constructively
boosted, while all other peaks add destructively to zero.18 As signal
averaging four t1 increments could also give this sensitivity improve-
ment, the multiplex advantage has been reinstated.

4.1.1. Complex Hadamard matrices
Although Hadamard matrices exist only for orders N ¼ 2 and

N ¼ 4k where k is an integer, it is possible to extend the ideas dis-
cussed in this section to any integer N by considering complex

Hadamard matrices [56], which are defined by HðcÞp;q ¼ e
2pıðp�1Þðq�1Þ

N ;

p; q ¼ 1;2; . . . ;N. Like the real Hadamard matrices in Eq. (65), these
satisfy HðcÞðHðcÞÞy ¼ NI, which is the essential characteristic needed
by Hadamard spectroscopy. The complex Hadamard matrices of
orders 2, 3 and 4 are:

HðcÞ2 ¼
1 1
1 �1

� �
; HðcÞ3 ¼

1 1 1
1 e

2pı
3 e�

2pı
3

1 e
�2pı

3 e
2pı
3

0B@
1CA; HðcÞ4 ¼

1 1 1 1
1 ı �1 �ı

1 �1 1 �1
1 �ı �1 ı

0BBB@
1CCCA:
ð66Þ

It is seen that, even for N ¼ 4, the real and complex Hadamard
matrices differ. When translated into NMR terms (for the N ¼ 4
case), this means that, while the first experiment would excite all
four peaks with zero phase, the second would excite them with
phases equal to 0; p2 ;p;

3p
2 , respectively. Contrast this with an equiv-

alent experiment using real Hadamard matrices, for which the pulse
phases for each peak would be set to 0;p;0;p. Despite these differ-
ences, the arguments above can be repeated using complex Hadam-
ard matrices, resulting in the same increase in signal to noise. In this
case, the spectra must be added using the same phase coefficients
used to excite them–effectively, a sort of discrete Fourier transform.

Note that, while real Hadamard matrices require the selective
excitation to be real – that is to place the excited spins either along
x̂ or �x̂ in the Bloch sphere – their complex analogs require the
spins to be evenly distributed in the x̂ŷ plane of the Bloch sphere,
a condition which may be more difficult to achieve experimentally
and to post-process.

4.2. Single-scan Hadamard spectroscopy

Parallelizing 2D Hadamard spectroscopy requires a sequence
which will simultaneously excite all spectral patterns as shown
in Fig. 28a, but will also place them in different spatial positions
along the sample as shown in Fig. 29. With such a pattern encoded,



Fig. 23. Representative series of real-time 2D HSQC NMR spectra recorded on a � 3:2 mM ubiquitin solution, following the dissolution of an initially fully protonated
lyophilized powder onto a D2O-based 50 mM phosphate buffer. The times indicated in each frame correspond to the approximate delay elapsed since the powder was initially
dissolved (something which happened outside the magnet) and the average time of the data acquisition. In the actual experiment a full series of spectra separated by ca. 4 s
were recorded over a 20 min interval; only a subset of these spectra is shown [43].
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the mixing sequence – which will affect all sites simultaneously –
can be applied. Collecting an FID from each slice and Fourier trans-
forming it using a spatial-spectral acquisition sequence, could then
provide all the information being sought in a single-scan. The
acquisition block demanded by this is, as discussed in Section 3.2,
furnished by Echo Planar Spectroscopic Imaging (EPSI). A 2D Fou-
rier transform will have to be applied to the resulting EPSI data
set in order to recover the pattern in Fig. 29b. Once this is achieved,
one can proceed as with conventional Hadamard spectroscopy, viz,
add and subtract the spectra in accordance with a Hadamard ma-
trix, as shown in, e.g., Fig. 28b. The main ‘‘trick” in this single-scan
2D Hadamard implementation is the use of spatial-spectral pulses
capable of encoding the different Hadamard patterns of Fig. 29.
Two 2D NMR sequences implemented in such a manner – one
for homonuclear spectroscopy and the other for HSQC – are dis-
played in Figs. 30 and 32, with the corresponding excitation and
acquisition blocks highlighted. It is illustrative to outline these
Hadamard NMR experiments assuming only two chemical sites
of interest (Fig. 31). Notice that, although both excitation and
acquisition take place in a position-frequency plane, their fre-
quency axes differ: when the peaks are excited, it is along an indi-
rect, pre-mixing domain; when the signal is acquired, its spectral
contents are those present after mixing, and hence the frequency
axis corresponds to the direct domain. The precise values of
N1;Ge;N2;Ga; Ta will depend on the desired spectral characteristics,
and in particular, on the spectral widths SWj and line widths Dmj

along the direct ðm ¼ 1Þ and indirect ðj ¼ 2Þ domains. Care must
be taken when discussing the indirect domain: unlike a conven-
tional experiment, Hadamard spectroscopy preselects a small
number Npeaks of peaks along the indirect domain to be investi-
gated, and thus the regular Nyquist relations do not hold for that
axis. Indeed, the resolving power along the indirect m1 axis is deter-



Fig. 24. (Top) Pulse sequence capable of affording a single-scan 2D J-resolved NMR
spectrum, utilizing a continuous p

2-p phase encoding of the homonuclear coupling
along the indirect domain. (Bottom) Results illustrating the pulse sequences
performance on a cinnamic acid/DMSO-d6 solution, acquired with the various
indicated parameters. Other setup and processing parameters of the single-scan
data were akin to those in Fig. 14; notice the clearly discernible J-patterns for the
various chemically inequivalent sites in the molecule. (from [33].)

266 A. Tal, L. Frydman / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 241–292
mined by the selectivity of the excitation pulse – that is, by its abil-
ity to excite selectively the desired peaks, the width Dm1 of which is
given by 1

2NDt. This Dm1 is assumed here the width of a typical peak,
ideally set to the order of magnitude of 1

T2
, although it may be set to

be larger so long as no neighboring peaks are affected.
The spatial-spectral encoding effected during excitation must

also be taken into account during acquisition. The same spatial res-
olution must be used, which constrains the EPSI parameters Ga; Ta

to be ðkðaÞmaxÞ
�1 ¼ ðcGaTaÞ�1 ¼ Dz, and ðdkðaÞÞ�1 ¼ ðcGadtÞ�1 ¼ L,

where dt is the physical dwell time of the receiver during acquisi-
tion.19 The spectral axis, whose resolution and spectral width are gi-
ven by 1

2N2Ta
and 1

2Ta
, respectively, can be set arbitrarily to the desired

resolution requirements along the direct m2 domain. These parame-
ter relations are summarized in Table 4 (see also Appendix A).

4.3. Signal-to-noise considerations

Although single-scan Hadamard NMR condenses a 2D conven-
tional spectroscopic experiment, this offers no speed up compared
to UF2DNMR, which is single-scan as well. Instead, this section ar-
gues that single-scan Hadamard spectroscopy offers an improve-
ment in signal to noise over single-scan UF2DNMR by a factor offfiffiffiffiffiffiffiffiffi

Npeaks
N1

q
, where N1 is the number of points along the indirect domain

sampled by the ultrafast protocol. Thus, much like in the conven-
tional multi-scan case, single-scan Hadamard spectroscopy’s
19 In practice, the actual value of dt is set somewhat smaller to allow for smooth
variations in the spin density between slices (due to non-ideal excitation) which
might get otherwise smeared. Fortunately, the magnitudes involved are easily
achieved on modern hardware.
advantage is greatest for sparse spectra, or for spectra for which
one is mainly interested in a small number of selected peaks.

The single-scan Hadamard EPSI acquisition protocol retrieves a
1D spectrum from each site/slice of interest. Results have been pre-
viously derived for the SNR of a 1D experiment carried out on an
entire sample, acquiring N points (Eq. (57)). In the current case,
experiments are carried out for each of the Npeaks peaks of interest,
and hence SNR must be

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Npeaks

p
times smaller than in a conven-

tional 1D acquisition. This can be proved without an analytical cal-
culation, by the following argument. Consider the simplest 1D
experiment, consisting of a hard-pulse followed by acquisition,
and denote the SNR of its spectrum by X. Next, consider the same
experiment, this time using EPSI to acquire the signal (assuming
the same filter-bandwidth has been set in both cases). After Fourier
transforming over the k and t2 variables, one recovers the FID as a
function of position (see Fig. 20c). The SNR of each slice’s spectrum
is denoted by X0 (each being identical to the next, apart from the
random, uncorrelated noise) and it is assumed that there are
Nslices such slices. It is well known [55] that adding the results of
N different experiments increases the SNR by a factor of

ffiffiffiffi
N
p

. The
overall SNR must be the same whether a single FID is collected,
or whether the FIDs of Nslices are collected and then added together.
Hence X must equal

ffiffiffiffiffiffiffiffiffiffiffiffi
Nslices
p

X 0.
The spectrum from each slice is added and subtracted in the

single-scan 2D experiments, according to the corresponding
Npeaks 	 Npeaks Hadamard matrix (Fig. 31). This enhances each peak
by a factor of Npeaks. Noise gets added as well, albeit incoherently,
and hence its rms increases as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Npeaks

p
. The overall improvement

in SNR due to the Hadamard post-processing is, therefore,
Npeaksffiffiffiffiffiffiffiffiffi

Npeaks

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Npeaks

p
. The resulting SNR, vis-a-vis that of a conventional

1D acquisition, is:

SNRHAD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Npeaks

p
LM0

nrms
: ð67Þ

A comparison to the ultrafast case yields:

SNRHAD

SNRUF
¼ nðUFÞ

rms

nðHADÞ
rms

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fbwðUFÞ

fbwðHADÞ

s
: ð68Þ

It is the filter bandwidths that differ between the two experiments.
Whereas UF2DNMR partitions the sample into N1 slices, Hadamard
spectroscopy partitions it into Npeaks slices. All other things being
equal, the ratio of the corresponding EPSI acquisition gradients is
therefore N1

Npeaks
, and so:

SNRHAD

SNRUF
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N1

Npeaks

s
: ð69Þ

This increase in the SNR is illustrated experimentally in Fig. 32,
which compares single-scan 2D TOCSY 1H NMR experiments on a
sample containing L-tyrosine, using ultrafast and Hadamard
encodings.

4.4. The general case of spatial-spectral single-scan 2D NMR

The UF2DNMR excitation schemes proposed in Section 3 do not
assume any prior knowledge of the given distribution of chemical
shifts. However, in the event that the 1D spectrum of a sample is
known already and one is interested in studying the interac-
tions between spins via 2D NMR, we have just shown that signifi-
cant SNR gains can be made when dealing with sparse spectra by
using single-scan Hadamard spectroscopy. UF2DNMR excitation
schemes can be generalized to exploit this prior knowledge by
incorporating suitably designed spatial-spectral pulses [57]. This
modification will, as explained below, lead to an increase in the
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Fig. 25. Left: partial UF2DNMR HMBC spectrum of hyperpolarized vitamin E recorded at 12 mM concentration. Right: UF2DNMR HMBC of a 1:1:1:1 mix of natural abundance
toluene/xylenes dissolved in CH3OH, at 0.1 mM. Hyperpolarization took 90 min (Patrick Giraudeau and Lucio Frydman, unpublished).

Fig. 26. Different excitation/encoding modes in the spatial-spectral ðz� mÞ plane.
(a) A hard-pulse, exciting all spins in the sample, irrespective of their positions and
chemical shifts. (b) Spatially selective pulses, of the kind often used in imaging to
excite spins in a selected spatial region, regardless of their chemical shift. (c)
Spectrally selective pulses, used to excite a particular chemical site in the sample, as
is often done in NMR (for example, for water suppression). (d) UF2DNMR spatial-
encoding approach, relying on chirped RF pulses and oscillating gradients, to impart
the sample with a position and chemical-shift dependent phase, /ðz; mÞ ¼ Czm. This
is visualized schematically as windings of increasing helicity as m increases.

Fig. 27. Train-of-thought leading from conventional 2D NMR to single scan 2D
Hadamard spectroscopy. (a) Outline of a standard 2D NMR experiment: all
frequencies are excited, and the basic experiment is repeated many times while
varying t1, so as to be able to distinguish between the frequency content of the
spectrum prior to mixing. (b) Using a spectrally-selective pulse, a single peak is
excited and monitored during acquisition. The basic scheme needs to be repeated
for all frequencies of interest along the indirect m1 domain. This can save acquisition
time, but it entails knowledge of the 1D spectrum prior to commencement, and is
devoid of Fellgett’s multiplexing advantage, resulting in inferior SNR per unit time
compared to conventional 2D NMR. (c) These SNR limitations can be overcome by
exciting all frequencies of interest simultaneously with different phases according
to a Hadamard matrix, allowing for the reconstruction of the original spectrum (see
Fig. 28). (d) By incorporating an alternating excitation gradient, the spectrally-
selective pulses of panel (c) can be made spatially-selective as well, making it
possible to encode a different Hadamard experiment into each slice of the sample.
The results of each experiment can be probed spatial-spectrally using the
acquisition schemes discussed in Section 3.2.
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signal-to-noise ratio of the resulting 2D spectrum, while retaining
the single-scan nature of the acquisition.

The main idea behind this generalization is outlined in Fig. 33. In
conventional UF2DNMR, spins are excited and imbued with a heli-
cal winding (Fig. 26), the tightness of the winding being propor-
tional to their chemical shift: /ðz; mÞ ¼ Cmz. As a result of this,
gradient echoes can be acquired along the direct domain and, when
plotted as a function of k ¼ cGat, will be spaced in proportion to
their spectral distance: Dk ¼ CDm. For a sparse spectrum, this can
result in regions with no echoes, the acquisition of which wastes
time and leads to sub-optimal SNR while placing stricter demands
on the hardware. However, with an a-priori knowledge of the chem-
ical shifts X1;X2; . . . ;Xj; . . . ;XN present along m1, the chemical shifts
being targeted can be instilled with windings proportional not to m
but to the chemical shift’s index j (see Fig. 33). For example:

X1 $ /ðzÞ ¼ CzDm
X2 $ /ðzÞ ¼ 2CzDm
X3 $ /ðzÞ ¼ 3CzDm
. . .

XN $ /ðzÞ ¼ NCzDm:



Fig. 28. Conventional Hadamard spectroscopy, illustrated for the case of four peaks of interest. (a) The peaks are excited with different phases, given by a 4	 4 Hadamard
matrix (see Eq. (65)). The resulting FIDs are then added and subtracted as shown in (b) to single out a specific peak. For example, adding up FIDs #1 and #3 and subtracting
from these FIDs #2 and #4 results in an FID identical to that resulting from an experiment in which peak #2 was excited alone, but with a 4-fold increase in signal level.

Fig. 29. The single-scan Hadamard paradigm for the case of four peaks of interest. (a) The sample is partitioned into slices, and a different Hadamard pattern is encoded into
each slice using a spatial-spectral pulse, as detailed in the text. (b) The same result as (a), viewed in the frequency-position plane. Note that, while the slices are equidistant,
the excited frequencies can be arbitrarily chosen.
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This will result in an equispaced echo pattern along the indirect-do-
main’s k-axis, at positions kj ¼ jCDm. Dm is once again a user-defined
constant, chosen such that the echoes don’t overlap; that is, so that
CDm ¼ Dkmin P 1

L, where 1
L is the width of the echo when viewed as a

function of k. The effect of such a modified winding pattern is to
bring the echoes closer together – in fact, to bring them as close
as possible without having them overlap. This, in turn, allows one
to either reduce the time needed to collect the echo train, or –
equivalently – reduce the magnitude of the acquisition gradient.
This, in turn, decreases the filter bandwidth, increasing the SNR of
the resulting UF2DNMR spectrum. Much like in single-scan Hadam-
ard spectroscopy, the gain in SNR depends on the sparsity of the
echoes (see Section 4.3): if N1 is the number of points along an indi-
rect domain sampled by conventional UF2DNMR, and Npeaks is the
number of echoes present, the ratio of gradients employed (assum-
ing identical acquisition times) will be:

GðConventional UF2DNMRÞ
a

GðSpatial-spectral UF2DNMRÞ
a

¼ N1

Npeaks
: ð70Þ

The ratio of the respective filter bandwidths will be given by the
square root of Eq. (70), leading to a gain in SNR that is given by
the ratio:

SNRðConventional UF2DNMRÞ

SNRðSpatial-spectral UF2DNMRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N1

Npeaks

s
: ð71Þ

Alternatively, one can choose to utilize spatial-spectral encoding to
increase the resolution along the indirect domain. While in conven-
tional UF2DNMR the spacing between the echoes along the k-axis
is proportional to their winding, which is in turn proportional to
the encoding time tmax

1 , the spacing in spatial-spectral encoding is
fixed by the spatial-spectral excitation scheme. In conventional
UF2DNMR, increasing the encoding times to increase the spacing
(and hence the resolution along the indirect domain) entails a sim-
ilar increase in the acquisition gradient, which may be limited by
the hardware. On the other hand, using spatial-spectral encoding,
the spacing between the peaks is kept constant, allowing one to
increase the encoding time while simultaneously decreasing the
acquisition gradient. Fig. 34 exemplifies this feature with a homo-
nuclear 2D TOCSY example.

The generation of arbitrary spatial-spectral patterns underlying
both this and the Hadamard approaches is further discussed in the
Appendices.
5. Single-scan nD spatially-encoded imaging (SPEN MRI)

As mentioned in the introduction, NMR has become an
important tool in medicine following the introduction of Mag-
netic Resonance Imaging (MRI) ([4–6]). While originally used
to obtain maps of the spin density q0ðrÞ, modern day MRI allows
one to spatially map almost every quantity of interest measur-
able in NMR, including transverse ðT2Þ and longitudinal ðT1Þ
relaxation times, temperature, diffusivity and pH. All of those
provide substantial biochemical and clinical contrast, with high
spatial resolution, and with a minimum of invasive procedures
compared to other medical imaging tools. The basic objective



Fig. 30. HSQC single-scan 2D Hadamard spectroscopy. Top: outline of pulse sequence. The p-pulses within the HSQC sequence loops were used for heteronuclear decoupling.
Bottom: results for a model LAF tripeptide (only amide groups were detected). Parameters used: N1 ¼ 28;N2 ¼ 30; Ta ¼ 250 ls; Te ¼ 450 ls;Ge ¼ 4:2 G=cm;Ga ¼ 7:5 G=cm,
RF pulse digitization dwell times = 10 ls, 2 kHz effective direct-domain acquisition spectral widths, 20 mm effective field-of-views, and 5 ls acquisition dwell times. The
experiment was carried out on a 500 MHz Varian iNova spectrometer with a typical NMR coil length of 19 mm.
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of all MRI-based methods is to map the NMR observables as a
function of r. As the dimension of r is usually P 2, the natural
formulation for these experiments is that of nD NMR. In this part
of the Review, we therefore explore the prospects of obtaining
nD NMR images of the spin density q0ðrÞ for a given body, in
a single-scan ultrafast fashion. As will be further discussed, the
new spatially encoded alternative above presents some similari-
ties to traditional single-scan imaging methods, particularly with
Mansfield’s EPI. But, like the UF2DNMR methods from which it
derives, spatially encoded MRI differs by its use of a fundamen-
tally different way of encoding the spins’ interactions. The most
evident consequence of the new approach will be the loss of the
usual Fourier transforms used in imaging: The signal sðtÞ will be-
come directly proportional to q0ðr0ðtÞÞ, where r0ðtÞ is some tra-
jectory that can be set by utilizing the acquisition gradients,
GaðtÞ. Thus, instead of acquiring data in the so-called k-space,
SPEN MRI acquires the image point-by-point in real, physical
xyz-space. While endowed with certain disadvantages vis-a-vis
EPI, it turns out that these new scheme is well-suited for
addressing common spatially dependent artifacts such as B0

and RF inhomogeneities, or multiple chemical shifts; these fea-
tures are further described below.

In order to better highlight the new aspects associated with
SPEN MRI, we begin this section with a short overview of conven-
tional imaging methods. Spatially encoded MRI is then formulated
for a one-dimensional case. These principles are then used to de-
rive expressions for the spatial resolution and intrinsic signal-to-
noise ratio (SNR) of the experiment; generalizations to two- and
three-dimensional MRI acquisitions then follow. It will also be
shown how various EPI features appear corrected in SPEN MRI
(Section 5.4), and – using appropriate post-processing techniques
– how its SNR can be brought up to par with conventional Fourier
imaging. Finally, Section 6 will be concerned with some spectral
aspects of these new single-scan imaging modalities it is shown
how the same post-processing techniques used to improve the
SNR of imaging experiments can be useful in obtaining multiple
images of different chemical sites, while preserving the simplicity
and single-scan character of the experiment. We conclude by
showing how SPEN MRI can also be used to acquire a 2D NMR spec-
trum by the application of a single excitation chirped pulse, adding
another spatial-encoding method to the arsenal outlined in
Section 3.1.

5.1. nD NMR imaging

We begin by focusing on classical NMR imaging experiments
designed to obtain a spin density ðq0ðrÞÞ map, while neglecting
all other effects, such as relaxation and diffusion. Therefore, unless
otherwise noted (e.g., in Section 6), a single site whose chemical
shift is zero will be assumed.

In an imaging experiment [58,59], all spins in the sample are
initially assumed to be aligned with the main magnetic field. The
magnitude of the magnetization vector varies from point to point,
and is proportional to the spin density function, MðrÞ / q0ðrÞẑ. Fol-
lowing a hard p

2 excitation pulse, all spins are brought into the
rotating frame Bloch sphere’s x̂ŷ-plane, so MðrÞ / q0ðrÞx̂. Once
tipped, the magnetization is acquired in the presence of a time-
dependent gradient, GaðtÞ. Letting kðtÞ ¼ c

R t
0 Gaðt0Þdt0, it was noted

in Section 2.1 that the signal sðtÞ can be considered a function of
kðtÞ; sðtÞ ¼ sðkðtÞÞ (Eq. (7)), and that varying GaðtÞ allows one to



Fig. 31. Single-scan Hadamard experiment outlined for Npeaks ¼ 2 sites of interest. In (a), these are encoded using a spatial-spectral pattern which follows a 2 	 2 Hadamard
matrix (b). An EPSI sequence is used to retrieve the spatial-spectral pattern following mixing (c). The spectral profile of each slice f jðmÞ now contains the sums and differences
of the individual spectra, encoded with the appropriate phases. To reconstruct the rows of interest, appropriate sums and differences of f jðmÞ values are taken. These resulting
Npeaks 1D data sets can then be arranged in a 2D plot (d).

Table 4
Single-scan Hadamard experimental parameters.

To set . . . Set . . . to

SW1 The spectral width along the indirect domain Te The duration of the excitation gradient’s lobe 1
2SW1

Dm1 The spectral selectivity along the indirect domain N1 The number of iterations of the excitation gradient 1
2TeDm1

Npeaks The number of peaks of interest Ge The excitation gradient Npeaks
LTe

SW2 The spectral width along the direct domain Ta The duration of the acquisition gradient’s lobe 1
2SW2

Dm2 The spectral selectivity along the direct domain N2 The number of iterations of the acquisition gradient 1
2TaDm2

– – kðaÞmax ¼ cGaTa
The maximal k-value during acquisition kðeÞmax ¼ cGeTe

– – dt The receiver dwell time At most 1
cGaL
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vary kðtÞ and hence sample the response of the spins in the so-
called k-space.

There are many protocols available for acquiring complex data
sets in k-space, each with its own advantages and disadvantages.
Two such protocols, dealing with a two-dimensional k-space, are
illustrated in Fig. 35. Both approaches begin with a spatially-selec-
tive pulse along the z-axis to excite a particular plane of the object
to be imaged; following this excitation the initial value of k is zero,
but if purge gradients are applied one can shift this value prior to
acquisition. This is exploited in 2D gradient echo (GRE) imaging
(Fig. 35a) to perform several experiments sampling kx along paral-
lel, constant-ky lines, but varying the initial value of ky between
experiments so as to eventually scan the full kx � ky plane. This ap-
proach, in which one scans the kx � ky plane line-by-line in inde-
pendent scans and then Fourier transforms the result to obtain
an image, is analogous to classical 2D NMR spectroscopy [14]:
there one scans constant t1 lines in the t1 � t2 plane and Fourier
transforms the result to obtain a 2D spectrum. A main distinction
between the imaging and spectroscopy protocols stems from the
fact that kx and ky, unlike t1 and t2, can be given negative or posi-
tive values, simply by reversing the currents that generate the gra-
dients. Moreover, the ability to arbitrarily vary kxðtÞ and kyðtÞ by
controlling GxðtÞ and GyðtÞ allows one considerable freedom in
designing the MRI acquisition protocols. In particular, it is possible
to extend the scheme of Fig. 35a so as to scan the entire 2D data set
within a single experiment. This is the main idea underlying the
EPI experiment [60] illustrated in Fig. 35b, which shows how
periodic variations of the gradients can trace a trajectory covering
an entire region of interest throughout the 2D kx � ky plane.
Numerous different variations on this basic scheme have been



Fig. 32. Experimental comparison of signal-to-noise ratios between 2D Hadamard and ultrafast spectroscopies, by a 2D TOCSY NMR experiment, executed on a 2 mM L-
tyrosine hydrochloride D2O solution. (Top) Pulse sequences used in optimized ultrafast (left) and Hadamard-based acquisitions (right); further relevant parameters included
filter bandwidths of 108 and 25 kHz respectively, and 2.4 kHz widths along both domains. (Center) Magnitude-mode 2D spectra afforded by each sequence, illustrating
the chemical origin of each peak. (Bottom) Cross-sections afforded at the indicated arrow positions (plotted at equivalent noise levels) evidencing the sensitivity gains
afforded by the Hadamard procedure for different sites.

20 Assuming X1 ¼ 0, and a symmetric sweep with DO ¼ cGeL.
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suggested, including acquisitions along spiral trajectories [61,62],
and interleaving multi-scan acquisitions. Many of those proposals
are driven by the fact that, although the rectilinear EPI scheme in
Fig. 35b allows one to acquire an entire 2D data set in a single-scan,
it is very susceptible to field inhomogeneities, multiple chemical
shifts and other experimental imperfections [62,63]. These issues
will be further discussed below.

5.2. Principles of spatially encoded MRI

Conventional imaging monitors a signal proportional to the
Fourier transform of the spin density q0ðrÞ. As such, the nature of
the experiment is non-local, in the sense that every acquired point
contains contributions from all physical points in the sample (Eq.
(7)). Formally speaking, this is the result of the sine and cosine ba-
sis functions, eık�r, having non-local support. Spatially-encoded
imaging takes a different route by using localized basis functions
having finite support; that is the signal, at every instant in time,
originates (to a good approximation) from a particular localized
physical point in the sample, and is proportional to the spin density
q0ðrÞ at that point. By applying gradients, this point can be shifted
about the sample in a controlled manner. Acquiring while doing so
yields a time-varying signal whose magnitude is equal to q0ðrÞ
along a particular trajectory in the sample.
The chirped RF pulses (Section 2) used within the context of
spatial encoding will readily generate such a set of localized basis
functions. Indeed, by exciting the spins onto the transverse plane,
for instance by using a hard-pulse followed by a chirped p-pulse,
will instill them with a quadratic phase given by20:

/eðzÞ ¼ �
cGeTe

L
z2 � cGeLTe

4
: ð72Þ

If a signal were to be acquired after exciting the spins, it would
equal

s /
Z

q0ðzÞeı/eðzÞdz

¼
Z

q0ðzÞ cos /eðzÞð Þdzþ ı
Z

q0ðzÞ sin /eðzÞð Þdz: ð73Þ

Consider now the real part of this quantity: the rapidly varying
quadratic nature of /eðzÞ will cause cosð/eðzÞÞ – and, hence,
q0ðzÞ cosð/eðzÞÞ as well – to oscillate rapidly at nearly all points.
When integrated over z, these oscillating regions will not contribute
to the integral: on average, each positive region would be cancelled
out by the negative region that immediately follows it. However, by



Fig. 33. ‘‘Conventional” (left) versus spatial-spectral (right) UF2DNMR, assuming a homogeneous sample composed of two distinct chemical sites, XA and XD . Their resulting
echoes in UF2DNMR are spaced far apart. Prior knowledge of the chemical shifts, alongside the ability to excite arbitrary spatial-spectral profiles, allow one to design a spatial-
spectral pulse which instills XD with a lesser winding, moving the two echoes closer together. As a result, the acquisition time can be shortened, or, alternatively, the gradient
diminished, resulting in a narrower filter bandwidth and increased signal-to-noise ratio.
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Fig. 34. Conventional (left) versus spatial-spectral (right) UF2DNMR TOCSY experiment on a sample containing tyrosine ethyl ester. Longer encoding times per unit
acquisition gradient, made possible by the spatial-spectral encoding, have been used to increase the resolution along the indirect domain. (Taken from [57].)
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virtue of /eðzÞ having a minimum at z ¼ 0; cosð/eðzÞÞ is relatively
stationary and equal to unity near the extremal point z ¼ 0, at which
d/e
dz ¼ 0. The absence of fast oscillations at this stationary point im-
plies that

R
q0ðzÞ cosð/eðzÞÞdz � q0ðz ¼ 0ÞDz, where Dz is the width

of the region over which cosð/eðzÞÞ is approximately constant. This
is illustrated in Fig. 36, for a particular q0ðzÞ.

The use of fast oscillating basis functions to localize the signal is
a key element of SPEN MRI. The above reasoning shows that the
use of such functions ‘‘suppresses” the signals coming from all
points in the sample, except for a point at which the basis function
is relatively stationary. This approximation is termed the stationary
phase approximation [64], and is examined next in more detail.

5.2.1. SPEN MRI and the stationary phase approximation
The stationary phase approximation is best introduced by way

of an example. Let f ðxÞ ¼ e�bx2 , and consider the integral:



Fig. 35. Top: gradient-Echo (GRE) imaging. Bottom: Echo-Planar Imaging EPI. Both methods seek to sample the so-called k-space; the first does so with several experiments,
varying the value of Gy between each experiment and scanning a different horizontal line in k-space; the second acquires the entire space in a single experiment. Both
experiments use a selective pulse along the z-axis to initially select a particular slice of the sample; both apply a 2D Fourier transform to the acquired data in order to recover
the image (which is proportional to q0ðx; yÞ).
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I ¼
Z 1

�1
f ðxÞeı/ðxÞdx: ð74Þ

f ðxÞ and /ðxÞ ¼ ax2 are plotted in Fig. 37a. The real part of f ðxÞeı/ðxÞ

functions is shown in Fig. 37b. For simple f ðxÞ;/ðxÞ functions, an ex-
act evaluation of I is possible. It is also possible to obtain a general
approximate expression for I, under the assumption that /ðxÞ varies
rapidly compared to the function f ðxÞ (in the example discussed
above this would entail the width of the parabola, /ðxÞ ¼ ax2, being
much narrower than any variation in f ðxÞ). The phase /ðxÞ will
cause the function f ðxÞeı/ðxÞ to oscillate rapidly at all points, except
at points x0 for which d/

dx ¼ 0. At these points, the phase does not
vary at all, and its change, to first-order, is zero: it is stationary.
Those points x0 for which the phase is stationary are called station-
ary points. When evaluating Eq. (74) one can, to first-order, neglect
the fast oscillating parts of the integrand: a positive region of
f ðxÞeı/ðxÞ will soon be followed by a negative region of similar value
and their sum will cancel out. The only contributions to I will arise
from the function at the stationary points. For the case of a single
stationary point x0, one then has

I � ðwidth of stationary point regionÞ
	 ðvalue of f ðxÞ at x0Þ: ð75Þ

The width of the region of interest, schematically noted in Fig. 37b,
can be found by expanding the phase about the stationary point in a
Taylor series, /ðxÞ � /ðx0Þ þ 1

2 /00ðx0Þðx� x0Þ2, and noting that the
width of the bottom of the resulting parabola is approximately21ffiffiffiffiffiffiffiffiffiffi

1
/00 ðx0Þ

q
. Formalizing these notions for the case of a single stationary

point x0, namely when d/
dx ¼ 0 has a single solution, requires expand-

ing f ðxÞ;/ðxÞ about x0:

f ðxÞ � f ðx0Þ; ð76Þ

/ðxÞ � /ðx0Þ þ
1
2

d2/

dx2

 !
x¼x0

ðx� x0Þ2: ð77Þ

Introducing these expressions back into Eq. (74) yields:

I � f ðx0Þeı/ðx0Þ
Z 1

�1
e

ı12
d2/

dx2

� �
x¼x0

ðx�x0Þ2

dx: ð78Þ
21 The width of a parabola ax2 about x ¼ 0 is of the order �
ffiffiffi
1
a

q
.

The infinite integration can be evaluated analytically, with the final
result being:

I �
ffiffiffiffiffiffiffiffi
2pı
p

f ðx0Þeı/ðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2/

dx2

� �
x¼x0

r : ð79Þ

This derivation is general; it relies only on the phase /ðxÞ varying
more rapidly than the function f ðxÞ, and it is true for any f ðxÞ and
/ðxÞ. It is interesting to compare Eq. (79) for the special case
f ðxÞ ¼ e�bx2

;/ ¼ ax2. An exact analytic solution can then be found,
and yields:

Iexact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
�ıaþ b

r
; ð80Þ

versus:

Iapprox: ¼
ffiffiffiffiffi
pı
p ffiffiffi

a
p : ð81Þ

The two results agree when a� b, that is, when the phase varies
much more rapidly than the function f ðxÞ, in accordance with the
assumptions made.

The stationary phase approximation can be extended to higher
dimensions, by replacing the one-dimensional operators with their
nD analogs. Let f ðxÞ be a function of n variables, x1; x2; . . . ; xn, and
let x0 be a stationary point of f, that is, ðrf Þx¼x0

¼ 0; then:Z
all space

f ðxÞeı/ðxÞdx � ð2pıÞ
n
2f ðx0Þeı/ðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðHÞx¼x0

q ; ð82Þ

where H is the Hessian of /ðxÞ. For two dimensions ðn ¼ 2Þ, for
example, one has:

HðxÞ ¼
@xx/ðxÞ @xy/ðxÞ
@yx/ðxÞ @yy/ðxÞ;

� �
ð83Þ

(where @xy stands for @2/
@x@y, etcetera). The Hessian generalizes the no-

tion of curvature – embodied in one dimension by the 2nd deriva-
tive – to an arbitrary number of dimensions.

5.2.2. Stationary points and SPEN MRI
With all these elements as background, the approach taken by

spatially encoded UFMRI can be summarized as follows. First, the



Fig. 36. The use of localized basis functions in spatially-encoded imaging. (a)
Assumed spin density q0ðzÞ, as a function of position. (b) The cosine of the phase
following a hard excitation pulse and a chirped p-pulse: cosð/eðzÞÞ. (c) The product
q0ðzÞ cosð/eðzÞÞ, equal also to the (real part of the) integrand in Eq. (73). Due to the
oscillatory nature of the function, integrating over it will average out to zero, except
for the shaded region. The width of the shaded region is determined by the basis
function shown in (b), while the area is proportional to q0 at z ¼ 0.
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spins’ transverse magnetizations are given a quadratic phase pro-
file, /ðrÞ, having a minimum at some physical point in the sample,
r0; that is, ðr/Þr¼r0

. This can be carried out by applying a gradient
and exciting the spins with a chirped p

2 pulse; alternatively, one
could apply a homogeneous, hard p

2 pulse, followed by an adiabatic
p-sweep executed under the action of a gradient. Then, by applying
acquisition gradients (which add phase terms that are linear in po-
sition), the minimum r0 can be moved about some trajectory, the
precise shape of which depends on the precise time-dependence
of the gradients. Due to the rapidly varying quadratic phase, the
signal from all spins in the sample will interfere destructively ex-
cept at r0, where the phase is stationary. Hence, if at time t0 the
minimum is at r0ðt0Þ, then sðtÞ / q0ðr0ðt0ÞÞ. Since the signal is pro-
portional to q0ðrÞ along the trajectory, no Fourier transform is
needed to extract the image – merely monitoring the data and
arranging the collected FID on an nD-grid suffices.

5.2.3. Example #1: 1D spatially-encoded imaging
In order to get a feel for the magnitudes involved and their

dependence on the various parameters, the simple 1D case shown
in Fig. 38 will be examined. The p

2 chirped pulse tips the spins onto
the x̂ŷ-plane and creates a quadratic phase dependence given by
Eq. (14). Assuming a symmetric bandwidth DO, the excitation
phase can be precisely recast in the form /eðzÞ ¼ 1

2 azðz� z0Þ2 with:

az ¼
TeðcGeÞ2

DO
; ð84Þ

z0 ¼
DO

2cGe
: ð85Þ
By adjusting DO accordingly, one can set the initial acquisition
point, z0, arbitrarily. Denoting DO ¼ ðOf � OiÞ ¼ cGezf ;e � cGezi;e,
where zi;e; zf ;e are the initial and final points excited by the chirped
pulse, respectively, one has:

az ¼
cGeTe

Le
; ð86Þ

z0 ¼ zf ;e: ð87Þ

The symmetric excitation sweep means that zf ;e ¼ �zi;e, and
Le � zf ;e � zi;e ¼ 2zf ;e ¼ �2zi;e. Note that if one were to begin acqui-
sition at this point in time, the first data point at t ¼ 0 would be
proportional to q0ðzf ;eÞ, the spin density at the last point excited
by the chirp. When a signal is next acquired in the presence of a
gradient, the spins’ phase becomes time-dependent,

kðtÞ ¼ c
Z t

0
Gadt0 ¼ cGat; ð88Þ

/ðz; tÞ ¼ UeðzÞ þ kðtÞz ¼ 1
2
azðz� z0ðtÞÞ2; ð89Þ

z0ðtÞ ¼ z0 �
kðtÞ
az
¼ zf ;e �

cGaL2
e

T2
e

" #
t; ð90Þ

and the signal itself, as picked up by the receiver, will be:

sðtÞ /
Z

the sample
Mþðz; tÞdz � q0ðz0ðtÞÞeı/ðz0ðtÞ;tÞdz; ð91Þ

where dz is denoted by

dz �

ffiffiffiffiffiffiffi
2p
az

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pLe

cGeTe

s
: ð92Þ

The absolute magnitude of the signal will therefore be proportional
to:

jsðtÞj / jq0ðz0ðtÞÞDzj; ð93Þ

with z0ðtÞ given by Eq. (90). Setting kðaÞmax � cGaTa ¼ �cGeTe � �kðeÞmax,

ensures that z0ðTaÞ ¼ z0 � GeTe
Ga

� �
¼ zi;e, thus probing in a linear man-

ner the region from zf ;e to zi;e, as shown in Fig. 39. The order in
which the image is unraveled is, therefore, opposite to the order
in which the spins are excited.

Fig. 40 presents the results of several computer simulations of
the pulse sequence in Fig. 38. In each figure, the dashed line is
the initial spin density q0ðzÞ while the solid line is the absolute va-
lue jsðtÞj of the acquired FID. Fig. 40a shows the response to a
square input profile. The sharp discontinuity at the edges of the
profile causes the image to deviate from a rectangular shape; this
is due to a breakdown of the stationary phase approximation,
which requires the phase to vary more rapidly than the profile
being imaged. On the other hand, in Fig. 40b the acquired image
coincides with q0ðzÞ perfectly, demonstrating the effectiveness of
the method. Fig. 40c serves to highlight another point of interest,
that of spatial resolution. As in Fig. 40a, the stationary phase
approximation breaks down, since the quadratic phase changes
more slowly than the spin density q0ðzÞ being imaged. Put another

way, the quadratic phase 1
2 azðz� z0Þ2 defines a point spread func-

tion whose width, given by
ffiffiffiffiffiffiffi
2p
jaz
j

q
¼ dz, is wider than q0ðzÞ.

Fig. 41 presents an experimental comparison in one dimension
of spatially encoded and of conventional, Fourier transform, GRE-
based imaging, with the images shown alongside the respective
pulse sequences used to obtain them.

5.2.4. Example #2: 2D SPEN MRI
A possible way to extend the above scheme to the single-shot

scanning of two spatial dimensions is shown in Fig. 42a. The spins,



Fig. 37. The stationary phase approximation, illustrated. (a) Solid line: an arbitrary function f ðxÞ. Dashed line: /ðxÞ ¼ ax2. (b) The real part of f ðxÞeı/ðxÞ , equal to f ðxÞ cosð/ðxÞÞ,
clearly showing the function oscillates rapidly except at the region about the stationary point, the width of which is determined by the phase /ðxÞ.

Fig. 38. 1D spatially-encoded imaging (SPEN MRI). An initial p
2 chirped pulse excites the spins sequentially onto the x̂ŷ-plane, creating a quadratic phase having an extremal

point at one end of the sample. Acquiring in the presence of a gradient with an opposite sign shifts the extremal point continuously throughout the sample, generating a signal
whose modulus is proportional to the spin density, q0ðzÞ.

A. Tal, L. Frydman / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 241–292 275
initially in thermal equilibrium, are along the Bloch sphere’s
z-axis, MðrÞ / q0ðrÞẑ. Following a chirped p

2 pulse along the
x̂-axis, applied in the presence of a gradient Gx

e , the spins are
excited onto the Bloch sphere’s x̂ŷ-plane with a quadratic phase
given by Eq. (14). Hence, the magnetization can be written as
MþðrÞ / q0ðrÞe�ı12axðx�x0Þ2�ıCx , where
ax ¼
ðcGx

eÞ
2Te

DO
; ð94Þ

x0 ¼ �
DO

2cGx
e

; ð95Þ

Cx ¼
p
2
þ TeDO

4
; ð96Þ
under the assumption that X1 ¼ 0 and that DO is symmetric about
zero. Cx is a constant independent of x, and can be omitted as it will
not affect the conclusions or derivation.

Following the p
2 excitation chirp, a p-chirp is applied in the pres-

ence of a gradient Gy
e along the y-axis. This adds a quadratic y-

dependent phase to the spins as indicated by Eq. (27), such that,
following the pulse, MþðrÞ / q0ðrÞeı12axðx�x0Þ2þı12ayðy�y0Þ2þıCy with
ay ¼
2ðcGy

eÞ
2TðpÞ

DOðpÞ
; ð97Þ

y0 ¼ 0; ð98Þ

Cy ¼ �
TðpÞDOðpÞ

4
: ð99Þ

As before, Cy will be omitted. Purge gradients are then applied along
both axes. They serve to add a constant phase of the form bxxþ byy,
which, in effect, allows one to calibrate x0; y0 precisely. For example,
one can choose ðx0; y0Þ to be the coordinates of the point A shown in
Fig. 42b.

Consider next the acquisition portion of the sequence. By vary-
ing the gradients, x0 and y0 can be made time-dependent. Owing to
the stationary phase approximation, the signal at every instant
throughout the acquisition will, to a very good approximation,
originate solely from the point ðx0; y0Þ and be proportional to
q0ðx0; y0Þ. By varying the acquisition gradients throughout acquisi-
tion one can change the position of ðx0; y0Þ, and record
q0ðx0ðtÞ; y0ðtÞÞ along some path determined by the user – e.g., the
path shown in Fig. 42b (with the corresponding gradients illus-
trated in Fig. 42a). The only post-processing needed to retrieve
the 2D image in this case would be to rearrange the acquired data



Fig. 39. The p
2-chirp, which serves to excite the spins sequentially onto the x̂ŷ-plane

by sweeping its frequency from Oi ¼ cGezi;e to Of ¼ cGezf ;e , creates a quadratic phase
having an extremal point at zf ;e . Acquiring in the presence of a gradient with an
opposite sign ensures the extremal point moves from zf ;e back to zi;e.
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Fig. 40. Simulation results: spin densities q0ðzÞ (dashed line) versus acquired image
(solid line) using 1D SPEN MRI, following the pulse sequence shown in Fig. 39a with
Te ¼ 5 ms; cGe ¼ 5 kHz=mm, sample size L ¼ 20 mm;DO ¼ cGeL ¼ 100 kHz; Ga ¼
�Ge and Ta ¼ �Te . (a) Square profile, showing the breakdown of the stationary
phase approximation due to a discontinuous, abruptly-changing profile q0ðzÞ. (b)

Two Gaussians, q0ðzÞ ¼ exp � z�L=4
r

� �2
� �

þ exp � zþL=4
r

� �2
� �

with r ¼ 1:66 mm – the

agreement between the simulated and actual profiles illustrates the effectiveness of
the method. (c) Same as in (b), with r ¼ 0:33 mm. Here, the profile q0ðzÞ’s spatial
variations occur on a smaller scale than the width of the parabolic phase – that is,
they are finer than the method’s intrinsic resolving power – resulting in a smeared,
wider point-spread function.
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along the predetermined trajectory; no Fourier transformation of
the data is needed.

To see how this comes about in more detail, we denote, as
before, kðtÞ ¼ c

R t
0 Gaðt0Þdt0, where t ¼ 0 signifies the beginning of

acquisition. Using this notation, the transverse magnetization
during acquisition can be written as:

Mþðr; tÞ / q0ðrÞeı 1
2axðx�x0Þ2þ1

2ayðy�y0Þ2þkxðtÞxþkyðtÞyð Þ � q0ðrÞeı/ðr;tÞ: ð100Þ

The time-dependent minimum of the phase /ðr; tÞ can be found by
solving ðr/ðr; tÞÞr¼r0

¼ 0, which yields:

x0ðtÞ ¼ x0 �
kxðtÞ
ax

; ð101Þ

y0ðtÞ ¼ y0 �
kyðtÞ
ay

: ð102Þ

Eqs. (101) and (102) illustrate an important feature: the trajectory
r0ðtÞ ¼ ðx0ðtÞ; y0ðtÞÞ is linear in k. Thus, to increase x0 we apply a po-
sitive x-gradient, and to decrease x0 apply a negative x-gradient.

Using the stationary phase approximation and the above
expressions for Mþðr; tÞ, the signal sðtÞ /

R
Mþðr; tÞdr can be

approximated using Eq. (82) (up to constant factors depending
on coil geometry, etc.) as:

sðtÞ � 2pıq0ðx0ðtÞ; y0ðtÞÞeı/ðx0ðtÞ;y0ðtÞ;tÞffiffiffiffiffiffiffiffiffiffiaxay
p ; ð103Þ

since the Hessian of /ðr; tÞ is

Hðr; tÞ ¼
ax 0
0 ay

� �
; ð104Þ

and its corresponding (time-independent) determinant is
det H ¼ axay.

5.2.5. Resolution considerations
It is instructive to compare the resolution offered by SPEN MRI

against that offered by conventional Fourier imaging methods, by
examining the one-dimensional case. Eq. (92) expresses the voxel
size dz for the spatially encoded case. Assuming that the excited re-
gion Le equals the desired field of view (FOV), and that the sample
is excited as shown in Fig. 39, with cGaTa ¼ �cGeTe, then

dzðSPEN MRIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FOV
jcGaTaj

s
: ð105Þ

In Fourier imaging, on the other hand, the voxel size is determined
by the inverse of the scan’s dimensions in k-space, dzðFTÞ ¼

1
kðaÞmax
¼ 1

cGaTa
. Therefore, assuming the same parameters (Ga; Ta, FOV)

for both pulse sequences, one obtains:

dzðSPEN MRIÞ

dzðFTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cGaTaFOV

p
¼

ffiffiffiffiffiffiffiffiffiffi
NðFTÞ

p
; ð106Þ



Fig. 41. Experimental comparison of conventional (a) and spatially-encoded (b)
one-dimensional images, presented alongside the respective pulse sequences used
to obtain them. The experiments were carried out on a uniform water-based
polyacrylamide gel filling a 5 mm NMR tube, doped at its center with a CoCl2

solution. The observation coil was nearly 18.5 mm in length, and the paramagnetic
doping led to a low signal-intensity region ca. 3 mm long. Like all remaining
experiments detailed in this review, these measurements were carried out at
500 MHz using a Varian iNova NMR console. Note the 5 ms delay times used to
ensure full decay of the spins in the middle of the sample.

Fig. 42. (a) 2D SPEN MRI-based pulse sequence. The spins are first excited onto the
x̂ŷ-plane with the aid of a p

2 pulse, creating a quadratic phase /ðx; yÞ ¼ 1
2 axðx� x0Þ2. A

p-chirped pulse in the presence of Gy adds a quadratic phase along the y-axis,
/ðx; yÞ ¼ 1

2 axðx� x0Þ2 þ 1
2 ayðy� y0Þ

2. Simultaneous purge gradients add linear com-
ponents and ensure that /ðx; yÞ has an extremal point at A, shown in (b). The
extremal point is shifted during acquisition – once again, using gradients – to sweep
the path shown in (b). Note that although formally one might say kðtÞ ¼

R t
0 Gaðt0Þdt0

varies, the acquisition path is traced in real (as opposed to Fourier) space.
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where NðFTÞ is the number of voxels acquired in the conventional

imaging experiment, NðFTÞ ¼ kðaÞmax
dk ¼

cGaTa

FOV�1. Eq. (106) entails a signifi-
cant penalty, whose resolution is further discussed below.

5.2.6. Super-resolution
Eq. (106) highlights the main drawback of the spatial encoding

protocol discussed in Section 5.2, compared to conventional Fou-
rier-based MRI: its resolution per unit gradient is lower. Equiva-
lently stated, the point-spread function offered by the spatially
encoded methods relying on a simple magnitude signal calculation
will, for a given set of imaging parameters (Ga; Ta and FOV), be

ffiffiffiffi
N
p

larger than the Fourier voxel size (given by 1
kmax
¼ 1

cGaTa
).

An implicit assumption leading to this conclusion is that the
number of voxels along the spatially-encoded direction equals
NUF � FOV

dz , where dz is given by Eq. (105). While it is true that the
intrinsic width of the point-spread-function in SPEN MRI is given
by dz, it is, in fact, possible to oversample the image, by shifting
the quadratic phase in spatial increments smaller than dz while
constantly acquiring data. The resulting signal (given, for example,
by Eq. (91) in 1D), would still remain proportional to the spin den-
sity being sought, but it would now contain redundancy; that is, it
may substantially exceed the number of voxels NUF. This redun-
dancy can be exploited to increase the image’s resolution well be-
yond that given by dz in Eq. (105). Exploiting such redundancy is an
example of ‘‘super-resolution” processing, whose details are out-
lined in this section for the 1D case.

The signal at times tk ¼ kdt; k ¼ 1;2; . . . ;M, given in 1D by Eq.
(91), can be approximated by replacing the spatial integration over
the sample by a discrete sum of the form

sðtkÞ �
XNSR

p¼1

Mþðzp; tkÞDz ¼
XNSR

p¼1

q0ðzpÞeı/ðzp ;tkÞDz; ð107Þ

where NSR is the number of discrete elements used to approximate
the integral, Dz ¼ FOV

NSR
;q0ðzÞ is the sought-after spin density, and

/ðz; tÞ � /eðzÞ þ /aðz; tÞ is the acquisition phase of the signal, given
by the sum of the quadratic phase /eðzÞ induced by the excitation
chirp and the gradient-induced acquisition phase /aðz; tÞ ¼ kðtÞz.
Eq. (107) is equivalent to a matrix equation of the form

sðt1Þ
sðt2Þ
. . .

sðtMÞ

0BBB@
1CCCA ¼ M 	 NSR

matrix

0BBB@
1CCCA

qðz1Þ
qðz2Þ
. . .

qðzNSR Þ

0BBB@
1CCCA: ð108Þ

That is, s ¼ Pq, with s and q being column vectors and P an M 	 NSR

matrix which depends solely on the a-priori known acquisition
parameters. Recovering the column vector q is a matter of inverting
Eq. (108), using, for example, iterative gradient-descent methods to
minimize the error of the solution [65]. This approach is one exam-
ple of the use of oversampling to achieve ‘‘super-resolution”. Still,
since the time signal sðtkÞ is also accompanied by noise, care must
be taken with regard to the stability and accuracy of the numerical
operations. In the present instance, the inversion of Eq. (108) is par-
ticularly well-conditioned, owing to the parabolic phase character-
izing the matrix P.

The number of individual equations in Eq. (108) is given by M,
the number of time points, while the number of voxels sought after
in the super-resolved image is given by NSR, a free parameter. For
NSR > M – that is, if forcing a search for more spatial points than
there are temporal ones – unstable solutions result. In practice,
the limit NSR ¼ M is found to be often achievable. Thus, using over-
sampling, the number of voxels can be made equal to the number
of acquired points, making it dependent on the acquisition param-
eters as in conventional Fourier imaging. This can easily offset the
handicap encompassed by Eq. (106), as illustrated by the simple
synthetic patterns shown in Fig. 44.

5.3. Hybrid imaging techniques

Fourier and spatially-encoded imaging have different strengths.
Eq. (106) shows that Fourier imaging offers superior resolution per
unit gradient during acquisition. As discussed below, however,



Fig. 43. Left: hybrid imaging pulse sequence. After exciting the spins and spatially encoding one axis, a slice-selective 180 is applied, with crusher gradients to dephase the
out-of-slice spins. Then, a 2D image is scanned, using frequency encoding along the read direction and spatial encoding along the blipped axis; the resulting 2D data set then
is Fourier transformed only along the read direction to yield the final image. Right: an illustration of the slice selection, as well as the trajectory traversed along the spatially-
and frequency-encoded axes.
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SPEN MRI is particularly well-suited for coping with field inhomo-
geneities (Section 5.4) and multiple chemical shifts (Section 6.1).
Sometimes it is possible to combine the advantages of both ap-
proaches by applying different encodings to orthogonal axes. One
might, for example, exploit the immunity to inhomogeneity along
a low-bandwidth, blipped22 dimension by spatially encoding it,
while enjoying the superior resolution and sensitivity offered by
the Fourier method by using a conventional k-encoding along the
orthogonal axis [66,67]. Since the spatially-encoded axis in the
resulting hybrid imaging approach is in essence one-dimensional,
it is meaningful to spend some time studying the properties of 1D
SPEN MRI in depth; it will be noted, wherever appropriate, how
the results obtained can be incorporated into hybrid imaging. In par-
ticular, using super resolution, as described in Section 5.2.6, yields an
image comparable in resolution to EPI, while enjoying the aforemen-
tioned benefits offered by spatial encoding. This is illustrated in
Fig. 45.

Two additional benefits are worth highlighting in connection to
these hybrid imaging approaches. One relates to the possibility of
using a large acquisition gradient along the blipped, spatially-en-
coded direction, to unravel the low-bandwidth image. Indeed, as
detailed in Section 5.2.3, the acquisition gradient Ga along the spa-
tially-encoded axis satisfies GaTa ¼ GeTe, where Ta is the total time
during which Ga is applied along the blipped axis, and Te and Ge are
the duration of the chirped excitation pulse and the excitation gra-
dient, respectively. In principle, spatial encoding does not place an
intrinsic limit on the magnitude of Ge, which is therefore limited
only by hardware and safety considerations. By increasing Ge;Ga

can be increased as well. This is in contrast to echo-planar imaging,
in which the strength of the blipped acquisition gradient is limited.
The enlarged acquisition gradient diminishes susceptibility arti-
facts and the effects of B0 imperfections. The second benefit relates
to the possibilities of generating a full T�2 refocusing for every spa-
tially encoded voxel and throughout the acquisition of the 2D data
[67]. This enables a substantial cancellation of dephasing and inho-
mogeneity effects.

5.4. Spatial inhomogeneity correction with ultrafast MRI

As SPEN MRI unravels the image point-by-point, it provides a
good starting point for compensating for the effects of spatial inho-
mogeneities in the main B0 (or the B1) field. The basic concepts will
be first presented in a single dimension and their generalization to
2D/3D cases will be discussed subsequently. Note that, since hy-
brid imaging techniques (Fig. 43) enable one to spatially encode
a single axis and use conventional k-space imaging on other axes,
one-dimensional inhomogeneity corrections may not be merely
academic curiosities but valid and useful imaging tools.
22 A ‘‘blipped” gradient is one which is turned on sparsely and for short periods of
time. In 2D EPI, for example, the phase encoded axis is often advanced by means of a
‘‘blipped” gradient.
5.4.1. B0 inhomogeneity correction in one dimension
Consider a sample placed in an inhomogeneous main field,

taken to be parallel to the Bloch sphere’s z-axis: Bmain ¼ ðB0þ
DB0ðzÞÞẑ, inducing a spatially dependent off-resonance frequency,
xLðzÞ ¼ cB0 þ cDB0ðzÞ � xcs þ DxðzÞ. As before, assume that the
transmitter offset is calibrated such that the inherent chemical
shift of the site is 0. If one were to excite the spins with a chirped
pulse and acquire an image as shown in Fig. 39, the profile ob-
tained would be distorted: the initial chirp would not create a qua-
dratic phase of the form aþ bzþ cz2, but rather some intricate
phase /eðzÞ, since the non-linearity of DxðzÞwould break the ideal,
linear relation between time and position excited in the sample.
Furthermore, during acquisition, an additional phase DxðzÞt would
accumulate in addition to the effect of the gradient, kðtÞz. The total
phase of the spins during acquisition will hence be /aðz; tÞ ¼ /eðzÞþ
kðtÞzþ DxðzÞt. Invoking the stationary phase approximation
(which is still valid) and assuming for simplicity that, even though
distorted, the phase of the spins still has a single extremal point,
yields:

sðtÞ /
Z L=2

�L=2
q0ðzÞeı/aðz;tÞdz �

ffiffiffiffiffiffiffiffi
2pı
p

q0ðz0ðtÞÞeı/aðz0ðtÞ;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2/aðz;tÞ

dz2

� �
z¼z0ðtÞ

r : ð109Þ

This expression differs for the homogeneous case, Eq. (91), in two
fundamental ways:

� The manner in which the image is unraveled is no longer linear,
since z0ðtÞ – the position of the extremal point as a function of
time – is no longer a linear function of t, but rather the solution

to the complex non-linear equation d/aðz;tÞ
dz

� �
z¼z0ðtÞ

¼ 0.

� The voxel size,
dz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2/aðz;tÞ

dz2

� �
z¼z0ðtÞ

r ; ð110Þ
is no longer constant (even if Eq. (110) reduces to Eq. (92) in the
absence of inhomogeneity). This has the effect of distorting (aug-
menting or diminishing) the signal emanating from each voxel.

Of the two drawbacks outlined above, the first can be fixed by post-
processing, using an area-preserving image transformation. But the
second can corrupt the image, particularly in those regions in which
the signal dephases until disappearing below the noise level, ren-
dering futile any attempt at reconstructing the image by post-pro-
cessing. In the remainder of this section it will be shown how,
given an a-priori map of the inhomogeneity DxðzÞ, both problems
can be resolved without any additional processing, simply via shap-
ing the excitation pulse and the acquisition gradient.

To acquire an undistorted image under the inhomogeneity
DxðzÞ, two conditions need to be met: the voxel size dz must be



Fig. 44. The ability of the super-resolution algorithm to restore high-definition 2D MR images in the presence of noise. (a) Initial synthetic profile containing the target to be
resolved. (b) Image arising from simulating the effects of the sequence illustrated in Fig. 43, to which random noise was added to bring the effective SNR to about 5. Data
processing consisted of a 1D FT along the read-out axis, and an j SðtÞ jmodulus calculation of the resulting signal. (c) 2D profile arising upon applying the SR algorithm to the
data in (b). Images reproduced from [77].

Fig. 45. In-vivo scans of a mouse brain (FOV ¼ 15 mm	 15 mm, compared for several pulse sequences. (a) Single-scan hybrid imaging. The sequence is shown in Fig. 43. A
3 ms chirp was used with a 37 kHz/ms sweep rate. The slice selection pulse took 4 ms, with a slice thickness of 0.5 mm. Total acquisition time was 15 ms, resulting in voxel
sizes of 0.5 mm along both the spatially and frequency encoded axes. (b) Same as in (A), after employing super-resolved reconstruction along the spatially-encoded axis. (c)
Single-scan spin echo EPI (1 mm slice, with voxel sizes of 0:5 mm	 0:65 mm, and a total sequence duration of 24 ms). (d) A reference multi-scan Gradient-Echo image
(acquisition time = 30 s). Images reproduced from [77].

23 It is d/e
dz , and not /eðzÞ, which ultimately is physically meaningful (see Eq. (124)), as

an additional constant phase has no effect on the relative phasing and dephasing of
the spins.
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time-independent, and the acquisition path z0ðtÞmust be, as in the
homogeneous case, linear with time:

z0ðtÞ ¼ zf ;e �
zf ;e � zi;e

Ta

� �
t: ð111Þ

Since

d/aðz; tÞ
dz

¼ d/eðzÞ
dz

þ kðtÞ þ dDxðzÞ
dz

t; ð112Þ

d2/aðz; tÞ
dz2 ¼ d2/eðzÞ

dz2 þ d2DxðzÞ
dz2 t; ð113Þ

the demand dz ¼ const: can be recast, using Eqs. (113) and (110), as:

d2/eðzÞ
dz2 þ d2DxðzÞ

dz2 t

 !
z¼z0ðtÞ

¼ 1
dz2 ¼ const: ð114Þ

This furnishes a differential equation for /eðzÞ. Furthermore,
demanding that z0ðtÞ be linear is equivalent to demanding that
Eq. (111) be the solution of d/aðz;tÞ

dz ¼ 0. By Eq. (112), that demand
can be satisfied by choosing kðtÞ, and hence the acquisition gradient
cGaðtÞ ¼ dk

dt, to be:

kðtÞ ¼ � d/eðzÞ
dz

þ dDxðzÞ
dz

t
� �

z¼z0ðtÞ
: ð115Þ

This dictates the form of GaðtÞ. To sum up, one can recover the
undistorted image by suitably exciting the sample with the appro-
priate /eðzÞ and by shaping the acquisition gradient GaðtÞ according
to Eqs. (115) and (114). The explicit form of these two quantities
will be derived next.

Throughout the acquisition process there is a one-to-one corre-
spondence between the position of a voxel and the time at which it
is unraveled: t can thus be considered as a function of z, and Eq.
(111) can consequently be inverted to give tðzÞ ¼ Ta

Le
ðz� zf ;eÞ.

Hence:

d
dt
¼ dz

dt
d
dz
¼ � Le

Ta

d
dz
: ð116Þ
Based on this, it is possible to recover /eðzÞ by integrating Eq. (114)
twice. Of the two integration constants this demands, one is an
overall constant phase and is physically irrelevant; the other can
be obtained by recalling that, at the beginning of the acquisition,
the phase /aðz; t ¼ 0Þ – comprised solely of /eðzÞ at that point in
time – will have an extremum at z ¼ zf ;e:

d/eðzÞ
dz

� �
z¼zf ;e

¼ 0: ð117Þ

Using this as a boundary condition, and integrating twice:

/eðzÞ ¼ �DxðzÞtðzÞ � 2Ta

Le

Z
DxðzÞdzþ ðz� zf ;eÞ2

2dz2

þ TaDxðzf ;eÞ
Le

z: ð118Þ

Treating then dz; Ta; Le; zf ;e as given parameters and assuming that
the inhomogeneity DxðzÞ has been mapped and is known, Eq.
(118) completely determines the desired form of the excitation
phase.23

To obtain an expression for the acquisition gradient GaðtÞ, we
differentiate Eq. (115) and use Eq. (116):

cGaðtÞ ¼
dkðtÞ

dt
¼ � Le

Ta

d2/eðzÞ
dz2 þ d2DxðzÞ

dz2 t

" #
þ dDxðzÞ

dz
: ð119Þ

Comparing this with Eq. (114), note that the term in the square
bracket is constant and equal to 1

dz2, and hence:

cGaðtÞ ¼ �
Le

Tadz2 þ
dDxðzÞ

dz
; ð120Þ

which yields a closed form solution for GaðtÞ.
While GaðtÞ can be easily shaped using modern hardware

according to Eq. (120), it still remains to be shown how one can



280 A. Tal, L. Frydman / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 241–292
excite a sample with the appropriate phase, given by Eq. (118). To
this end a non-linear swept pulse has to be employed which, like a
chirped pulse, excites the spins sequentially but no longer in a z / t
linear fashion. The analysis of such pulses closely follows and gen-
eralizes that of Section 2.2.1. Indeed, a chirped pulse is character-
ized by an instantaneous angular frequency, xcðtÞ, which is
related to its phase by /cðtÞ ¼

R t
0 xcðtÞdt. Consider a sample with

a spatially dependent off-resonance frequency xLðzÞ, the result of
an excitation gradient Ge and some spatial inhomogeneity:
xLðzÞ ¼ cGezþ DxðzÞ. A properly calibrated chirped pulse will ex-
cite the spins onto the x̂ŷ-plane with a phase /eðzÞ. To compute this
phase, one can use Eq. (13), which is valid even in the non-linear
case; the non-linearity is then implicitly contained in xLðzÞ and
in tz, the time at which the chirped pulse excites the spin posi-
tioned at z.

To infer the desired form of xcðtÞ and tz in this inhomogeneous
case, we demand that Eq. (13) be equal to the desired phase profile
/eðzÞ given by Eq. (118). Differentiating these equations on both
sides yields:

d/cðtzÞ
dz

þ dxLðzÞ
dz

ðTe � tzÞ �xLðzÞ
dtz

dz
¼ d/eðzÞ

dz
: ð121Þ

where, by the rules of differentiation

d/cðtzÞ
dz

¼ d
dz

Z tz

0
xcðt0Þdt0 ¼ dtz

dz
:xcðtzÞ: ð122Þ

Note that xcðtzÞ is the frequency of the chirp at the point in time in
which it excites the spin at z, the off-resonance frequency of which
is xLðzÞ. Since the chirp excites those spins that match its instanta-
neous frequency, one must have xcðtzÞ ¼ xLðzÞ. Substituting this
into Eq. (121) and simplifying, one gets:

dxLðzÞ
dz

ðTe � tzÞ ¼
d/eðzÞ

dz
: ð123Þ

Solving for tz yields:

tz ¼ Te �
d/eðzÞ

dz
dxLðzÞ

dz

: ð124Þ

This yields the desired form of tz. Such relation can be inverted, in
most cases numerically, to yield zt , the position in the sample ex-
cited at a given time t. This can then be used to determine xcðtÞ,
since:

xcðtÞ ¼ xLðztÞ: ð125Þ

Eq. (125) merely expresses the requirement on the chirp to excite
the spins at zt at time t. All that remains to be done is to properly
calibrate the chirped pulse such that all spins will get precisely
tipped onto the x̂ŷ-plane. Using a constant irradiation amplitude
as shown in Fig. 4a will not suffice, as the non-linear sweep of the
pulse means different regions in the sample will be affected for dif-
ferent amounts of time. Eq. (15), though, remains valid, provided
the constant rate R is generalized to dxc

dt , the instantaneous rate.24

Fig. 46 presesnts an experimental example of how those consider-
ations can restore the integrity of a NMR image.

5.4.2. Generalization to higher dimensions
The techniques outlined in Section 5.4.1 can be generalized to

higher dimensions, with a few caveats. Assuming the spins have
been excited onto the x̂ŷ-plane with a phase /eðrÞ, they will accu-
mulate a phase /aðr; tÞ ¼ /eðrÞ þ kðtÞ � rþ DxðrÞt throughout
acquisition. In two dimensions the acquired signal will be:
24 This reduces to R in the case of a linear chirp.
sðtÞ ¼
Z

q0ðrÞeı/aðr;tÞdr � 2pıq0ðr0ðtÞÞeı/aðr0ðtÞ;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHÞr¼r0ðtÞ

q ; ð126Þ

where r0ðtÞ is the trajectory of the stationary point, given implicitly
by ðr/aðr; tÞÞr¼r0ðtÞ ¼ 0. H is the Hessian of /aðr; tÞ, as evaluated
along r0ðtÞ:

HðrÞ ¼
@xx @xy

@yx @yy

� �
/aðr; tÞ ¼

@xx @xy

@yx @yy

� �
/eðrÞ þ DxðrÞtð Þ: ð127Þ

As with the one-dimensional case, artifacts will be introduced into
the image via two routes: The acquisition trajectory r0ðtÞ might
deviate from the ideal, and the pixel size

dV � 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHÞr¼r0ðtÞ

q ; ð128Þ

might be time-dependent. Fortunately, the approaches for correct-
ing them outlined for the one-dimensional experiment (Sec-
tion 5.4.1) are applicable here as well: to force a particular
trajectory r0ðtÞ, the acquisition gradients GaðtÞ must be shaped,
and to ensure dV is time independent, the excitation phase
/eðx; yÞ must be tailored accordingly.

Assuming /eðrÞ has been computed, the first requirement is
straightforward to implement, by demanding r0ðtÞ is the stationary
point of /aðr; tÞ for all t:

r/aðr; tÞð Þr¼r0ðtÞ ¼ 0: ð129Þ

kðtÞ can be solved for explicitly by substituting /aðr; tÞ ¼ /eðr; tÞþ
kðtÞ � rþ DxðrÞt, giving

kðtÞ ¼ � r/eðrþrDxðrÞt½ �r¼r0ðtÞ: ð130Þ

As all quantities on the RHS are known, kðtÞ can be determined in
closed form via straightforward differentiation. Furthermore, /eðrÞ
can be found by demanding that dV (Eq. (128)), which depends
on /eðrÞ implicitly, be constant. Unlike the one-dimensional case,
in which there exists a 1–1 relation between time and position
(Eq. (116)), iterative numerical schemes must be employed in the
general case to find /eðrÞ. An analytical solution is, however, possi-
ble for some cases [11]. Fig. 47 shows an experimental example of
such an instance.

5.5. Signal-to-noise and noise filtering in SPEN MRI

An important feature to compare is the signal to noise ratio of
conventional Fourier imaging against SPEN MRI. This will be dis-
cussed using the case of 1D image acquisition as a framework.
As with the spectroscopic case (Section 3.3.4), we shall assume
some statistically random and additive noise nðtÞ to be present
in addition to the signal sðtÞ originating from the spins. The SNR
is defined as

SNR � srms

nrms
: ð131Þ

The subscript rms stands for root-mean-square, and for a signal f ðtÞ

of duration T is defined as frms �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T
0 jf ðtÞj

2dt
q

. Comparing the SNRs

of both SPEN MRI and FT imaging involves the computation of the
quantity:

SNRðSPEN MRIÞ

SNRðFTÞ ¼ sðSPEN MRIÞ
rms

sðFTÞ
rms

	 nðFTÞ
rms

nðSPEN MRIÞ
rms

: ð132Þ

It is often the case in imaging that one is interested in the signal to
noise per voxel. For a meaningful comparison the field-of-view
(FOV) and the voxel size ðdzÞ will be taken to be the same in both
experiments: dzðSPEN MRIÞ ¼ dzðFTÞ � dz; FOVðSPEN MRIÞ ¼ FOVðFTÞ � L.



Fig. 46. 1D spatially-encoded imaging in inhomogeneous fields: experimental results. All experiments were carried out on a 500 MHz iNova NMR spectrometer. The sample
is described in Fig. 41. (a and b) FT and spatially-encoded profiles collected from the phantom under conditions similar to those detailed in that figure: 5 G/cm excitation and
acquisition gradients, 10 ms average free-evolution times, 18.5 mm long samples, etc. (c and d) As in (a and b), but upon subjecting on the sample to an artificial
Xinh ¼ 1:31zþ 0:193z2 kHz (with z the displacement away from the sample’s center in mm). This inhomogeneity was introduced by distorting the z; z2 magnet shims, and was
characterized by mapping the water resonance using a simple gradient-echo sequence. (e) Idem as in (d) but after inserting the mapped inhomogeneity profile into the
algorithm described in the text, recalculating from it the correcting RF sweep and acquisition gradient patterns, and applying these for the acquisition of the data. The most
remarkable feature of this compensation procedure (and therefore a basic test of its correct functioning) is that it enabled the signal to endure in the time-domain, long after
either the conventional k-space or its analogous spatially-encoded signal have both decayed into the background noise. This, in spite of Xinh spanning over 25 kHz and of the
experiment still requiring Ge ¼ 5 G=cm, and an average Ga ¼ þ4:13 G=cm over the acquisition. Notice that although still not ideal, the wiggles exhibited by this experimental
Xinh-compensated profile are akin to those of its homogeneous counterpart in (b). Simulations indicate that these reflect in both cases limitations of the chirped excitation
pulse in delivering the desired profile, rather than in an actual failure of the compensation procedure.
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Letting kðSPEN MRIÞ
max � cGðSPEN MRIÞ

a TðSPEN MRIÞ
a ; kðFTÞ

max � cGðFTÞ
a TðFTÞ

a and
equating voxel sizes, one obtains

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

kðSPEN MRIÞ
max

q
¼ ðkðFTÞ

maxÞ
�1, or simply:

kðSPEN MRIÞ
max ¼ NkðFTÞ

max; ð133Þ

where L	 kðFTÞ
max ¼ N is the number of voxels – the same in both

experiments. The experimental acquisition time Ta will be taken
to be equal in both cases, so as to equalize the effects of relaxation;
hence, Eq. (133) becomes

GðSPEN MRIÞ
a ¼ NGðFTÞ

a : ð134Þ

Since GðSPENMRIÞ
a > GðFTÞ

a , one must use a larger filter bandwidth during
SPEN MRI; and since the noise level increases as the square root of
the filter bandwidth:

nðFTÞ
rms

nðSPEN MRIÞ
rms

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðFTÞ

a

GðSPEN MRIÞ
a

s
¼ 1ffiffiffiffi

N
p : ð135Þ

Signal levels can be similarly compared. From Eq. (91), the rms sig-
nal in a single voxel is jsðSPEN MRIÞ

rms j / M0ðz0ðtÞÞdzðSPEN MRIÞ up to some
proportionality constant which depends on the receiver geometry
and electronics (and is hence shared by both experiments). It can
be similarly shown [68] that for a single voxel jsðFTÞ

rms j / M0ðzÞdzðFTÞ.
Since voxel sizes have been chosen to be equal, sðFTÞ

rms ¼ sðSPEN MRIÞ
rms ,

and as a result

SNRðSPEN MRIÞ

SNRðFTÞ ¼
ffiffiffiffi
1
N

r
: ð136Þ

That is, spatial encoding suffers a
ffiffiffiffi
N
p

reduction in its SNR compared
to Fourier imaging, where N is the number of voxels. This, however,
can be remedied and brought up-to-par by suitable post-processing.
In what follows, we shall assume that the magnitude jsðtÞj of the ac-
quired SPEN MRI signal, which is proportional to the image, will be
used; any phase information will be considered superfluous. It will
also be convenient to employ the time-axis instead of the spatial z-
axis to describe the procedure. For the sake of simplicity, the treat-
ment will remain confined to the one-dimensional case.

In the beginning of an experiment, the filter bandwidth of the
NMR receiver needs to be properly set. If set too high, and exces-
sive noise will be introduced into the signal, whereas if set too
low, relevant frequencies will be filtered out. For SPEN MRI, the
range of essential frequencies is determined by the difference in
frequencies between the first and last voxels, situated at  L

2. The
spatially dependent off-resonance frequency, xLðzÞ ¼ cGaz, dic-
tates this difference to be xL þ L

2

� �
�xL � L

2

� �
¼ cGaL; thus one must

set fbw ¼ cGaL, which then sets the acquisition dwell time to 1
fbw.

The main insight into reducing noise levels is shown in Fig. 48:
while fbw ¼ cGaL, the actual signal emanates from a small region
of width dz, equal to the voxel size; all other spins are dephased
by the rapidly changing quadratic phase. Since noise levels in the
sample are proportional to

ffiffiffiffiffiffiffiffiffi
fbw
p

, it would be desirable to reduce
fbw from cGaL by a factor of N to cGadz. In principle, this is not pos-
sible, since the instantaneous frequencies of the voxels will span
the entire range cGaL throughout the acquisition. There is, how-
ever, no imaging information encoded in this frequency spread.
By suitable post-processing it is thus possible to localize the voxels
in frequency space into a narrow band of frequencies of width
cGadz, while filtering out the extraneous noise outside it.

The filtering process shown schematically in Fig. 49, and the
ensuing SNR gains, can be understood as follows: the SPEN MRI im-
age is the sum of noise and of the coherent signal of the image.
Spectrally, the noise is white and spans a range of frequencies gi-
ven by the fbw. However, the signal being sought, whose charac-
teristic scale of change of which is set by the voxel size dz, spans
a much smaller range of frequencies. Denoting by dt the smallest
time-scale associated with the image (see Fig. 49a), it follows that
the FT of the coherent signal of the image then occupies a region
not any larger than 1

dt. Since the z and t axes are linearly related
in 1D SPEN MRI, dt is proportional to the voxel size. In fact,

Ta

dt
¼ L

dz
¼ N; ð137Þ

where N is the number of voxels, and so, using Eq. (105):

1
dt
¼ cGaL

N
¼ fbw

N
: ð138Þ

With this insight, a filtering procedure to optimize the SPEN SNR
becomes straightforward: Any noise outside of a spectral width 1

dt
should be removed via a windowing-function (Fig. 49c) and the
resulting filtered spectrum should be Fourier transformed back to
the time-domain (Fig. 49d) to retrieve the desired, filtered image.



Fig. 47. 2D spatially-encoded imaging in inhomogeneous fields: experimental results. The images were obtained on the same phantom sample used in Figs. 46 and 41. (a)
Single-scan 2D FT EPI image recorded using a blipped read-out of 32 echoes spread over 32 ms; acquisition gradients were Gy ¼ 15 G=cm; Gx ¼ 0:85 G=cm (see Fig. 35)
(pulsed over 50 ls every 950 ls). (b) Single-scan 2D spatially-encoded image collected using a zigzagging scheme as in Fig. 42 with Gy ¼ 15 G=cm; Gx ¼
0:85 G=cm; Ny ¼ 16 and an excitation gradient of 4 G/cm. (c and d) Idem as in (a and b) but upon subjecting the sample to the artificial inhomogeneity XinhðzÞ ¼
0:023z2 þ 0:025z. (e) Idem as in (d), after applying the correction algorithm described in the text.

Fig. 48. In SPEN MRI, the filter bandwidth must be set to cover the entire sample,
cGaL, since the instantaneous frequency of each voxel varies throughout acquisition,
from � cGa L

2 to cGa L
2 . However, at each instant, only a small range of frequencies –

those originating from within the current voxel dz – comprise the signal.
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As the spectral components of the coherent time-domain signal of
the image are not disturbed, the image quality is preserved, while
the noise’s bandwidth is decreased by a factor of N. The gain in
SNR afforded by the filtering procedure is due to the reduction in
the noise level: The filter bandwidth has been effectively truncated
by a factor of N. Since the noise scales as

ffiffiffiffiffiffiffiffiffi
fbw
p

, this implies a gain offfiffiffiffi
N
p

in the SNR. Note that, by Eq. (136), this renders the SNR of SPEN
MRI comparable to that of Fourier-based imaging methods.

6. Spectroscopic aspects of ultrafast MRI and spatial aspects of
ultrafast 2D NMR

Spatially encoded 2D NMR and MRI share a common reliance on
frequency-swept pulses, applied in the presence of field gradients
so as to encode the spin interactions. It turns out that, as a result
of this, spatially-encoded images carry within them spectroscopic
information, and spatially-encoded spectra also carry the image
of the spins in the sample. In both cases, the complementary spec-
tral/spatial information arises at no extra cost in the experimental
complexity: it simply resides in the signal, whether we are inter-
ested in it or not. The extraction of this additional information is
the topic of the current section. First, in Section 6.1 it will be exam-
ined how one can extract different images from differing chemical
sites, a problem known as chemical shift imaging (CSI). In Sec-
tion 6.1.1 it will be shown that hybrid imaging (see Section 5.3)
can be used to carry out a CSI experiment in n-dimensions. The
extension of those ideas to cases involving inhomogeneous B0

fields will be briefly touched upon in Section 6.1.2. Following the
discussion of CSI, in Section 6.2 the inverse problem will then be
studied, namely, the extraction of a two-dimensional spectrum of
a sample by imaging that sample. This leads to a UF2DNMR spec-
troscopy method based on a single-sweep of the spins.

6.1. Chemical shift imaging

This section builds upon the concepts introduced in Sec-
tion 5.5, and shows how the phase of a SPEN MRI sðtÞ signal
can be utilized to spectrally separate images stemming from
media with different chemical shifts, such as fat and water in tis-
sues. This could allow for the chemical shift imaging (CSI)
[69,39,70] of all sources in the sample, using post-processing to
reconstruct the multidimensional images arising from every
chemical site, simultaneously and within a single-scan. SPEN
MRI is particularly well suited to accomplish this, as it does not
require a modification of the original pulse sequence – it only re-
quires using the hitherto disregarded phase of the signal. This is
unlike EPSI-type techniques used in Fourier-based spectroscopic
imaging, which require introducing an additional alternation of
the gradient (and hence an additional dimension [39]), in order
to spectrally resolve each peak of interest. In this section, the
chemical shift xcs will no longer be assumed zero. Starting for
simplicity with the one-dimensional case, generalizations to
more dimensions will be presented later.

The phase of the spins following a p
2-chirped pulse is given by Eq.

(14). If one were to acquire now the signal while applying a gradi-
ent Ga, the stationary point z0ðtÞ would follow a trajectory defined
by: d

dz ½/eðzÞ þ cGatzþxcst�z¼z0ðtÞ ¼ 0. Setting R � ExcitedFrequencyRrange
2pTe

¼
cGeL
2pTe

, GaTa ¼ �GeTe, and then solving for z0ðtÞ, one obtains:
z0ðtÞ ¼
L
2

1� 2t
Ta

� �
� xcs

cGe
: ð139Þ
We see that the effect of the chemical shift is to slightly shift the ac-
quired region by an amount Dz ¼ xcs

cGe
(compare Eq. (139) and (90));

for typical numbers, such as Ge ¼ 1 G/cm and a 100 Hz chemical
shift, this would imply a shift of approximately 0.2 mm for protons.



Fig. 49. Noise filtering in SPEN MRI. (a) The original signal with noise. dt signifies the voxel size along the time axis, which is proportional to the spatial z-axis. (b) The Fourier
transform of the signal in (a). The noise occupies a much larger band of frequencies (given by fbw) when compared to the band occupied by the signal, dt�1. (c) By filtering out
the noise, the effective filter bandwidth is truncated from cGaL to dt�1. (d) Fourier transforming backwards, the image remains unharmed while the noise levels drop by a
factor of

ffiffiffiffiffiffiffi
cGa L
dt�1

q
¼

ffiffiffiffi
N
p

, where N is the number of voxels.

25 The stationary point equation, d/ðyÞa
dy ¼ 0 does not contain time explicitly, and hence

the time-dependence of the stationary point enters only implicitly, via its dependence
on kyðtÞ. In the 2D case, the stationary point y0 retains its linearity in ky , even though
it is no longer linear in time.
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On the other hand, using Eq. (139) to evaluate /aðz0ðtÞ; tÞ, the phase
of the collected signal, one obtains:

/aðz0ðtÞ; tÞ ¼
cGeTeL

2T2
a

 !
t2 � cGeTeL

2Ta

� �
t

" #
þ 1þ Te

Ta

� �
xcst: ð140Þ

This /aðz0ðtÞ; tÞ separates naturally into two components: One that
is independent of the chemical shift and one that depends linearly
on it. The chemical-shift independent phase is shared by all spins,
regardless of their chemical shift, and can be removed by multiply-
ing the total signal by the negative of the phase, e�ıð...Þ. The remain-

ing term, 1þ Te
Ta

� �
xcst � Dmt, modulates the signal by an effective

offset Dm.
Consider next the acquisition of such a signal, assuming it orig-

inates from a sample containing q different chemical sites,

xð1Þcs ;x
ð2Þ
cs ; . . . ;xðqÞcs , each characterized by a different spin density

qð1Þ0 ðzÞ;q
ð2Þ
0 ðzÞ; . . . ;qðqÞ0 ðzÞ. Neglecting the small dependence of on

the chemical shift of z0ðtÞ noted in Eq. (139), the acquired signal

can be expressed as sðtÞ /
Pq

p¼1q
ðpÞ
0 ðz0ðtÞÞeı/aðz0ðtÞ;tÞ. Phase correcting

this signal can remove the above-mentioned phase terms common
to all sites, yielding:

sðtÞ /
Xq

p¼1

qðpÞ0 ðz0ðtÞÞeıDmpt; ð141Þ

where Dmp � 1þ Te
Ta

� �
xðpÞcs . The result of such a global ‘‘phase correc-

tion” is akin to the frequency demodulation introduced in Sec-
tion 5.5. Recall, from that discussion, that the spectral width of
the Fourier transform of the image (given by jsðtÞj), is given by
the inverse of the dwell time, chosen to be the filter-bandwidth,
fbw ¼ cGaL; hence, the image’s frequency components occupy a re-
gion of size cGadz � 1

dt in frequency space (Eq. (138), Fig. 49). The
Fourier transform of Eq. (141) merely results in the same spectral
content for each site p, shifted by an offset Dmp. The filtering proce-
dure assumes that this shift is larger than 1

dt, so the spectral contents
originating from different chemical sites do not overlap. Under this
assumption, the spectral contents of each site sðpÞðtÞ are distinct, and
can be singled out via a Fourier transform of the spatially encoded
FID. Then, by applying a windowing-function to the resulting spec-
trum and eliminating all spectral components originating from
sðkÞðtÞ; k–p, one can isolate the response from each chemically-
shifted site. Fourier transforming back to the time-domain retrieves
only that part of the image originating from the pth spectral peak:

qðpÞ0 ðzÞ. The procedure is outlined in Fig. 50 for the case of two chem-

ical sites, xð1Þcs ;x
ð2Þ
cs , and its net effect is the delivery of a set of chem-

ical shift resolved images.
The maximum resolving power of this spectroscopic imaging

method – that is, the closest two chemical shifts it can successfully
separate – can be estimated by demanding that the shift Dm be lar-
ger than the width of the spectral region occupied by each image,
1
dt. This leads to:
Dxcs P
fbwTa

NðTa þ TeÞ
: ð142Þ

Taking, as an example, Te ¼ 20 ms; Ta ¼ 0:2 s; Ge ¼ 0:2 Gauss=
cm; L ¼ 5 cm, one finds dz ¼ 5 mm and Dxcs P 0:5 kHz.

6.1.1. Hybrid chemical shift imaging
The notions just presented can be generalized to nD imaging by

employing either full nD spatial encoding, or hybrid imaging ap-
proaches [12]. We cover here the latter case (illustrated in
Fig. 43). Fig. 51a illustrates for completeness the 2D data set result-
ing from such an experiment: its rows are Fourier-encoded, while
its columns are spatially encoded. By treating the columns as one-
dimensional imaging experiments it is possible to apply the same
post-acquisition processing described for a 1D case; the remainder
of this section formalizes this notion for the 2D case.

The acquisition phase of the spins as a function of position can
be written, for a 2D hybrid SPEN MRI experiment, as:

/aðx; y; tÞ ¼ /ðxÞe ðxÞ þ kxðtÞx
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ðxÞa ðx;kxÞ

þ /ðyÞe ðyÞ þ kyðtÞy
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ðyÞa ðy;kyÞ

þxcst; ð143Þ

where /ðxÞe ;/ðyÞe are the phases encoded along the x- and y-axes prior

to acquisition. As the x-axis is Fourier-encoded, /ðxÞe ðxÞ ¼ �
cGaDTa;xx

2 is
the linear phase created by the gradient just prior to acquisition;
/ðyÞe ðyÞ is the quadratic phase induced by the chirp, as given by Eq.
(14) with z replaced by y. The acquired signal is:

sðtÞ ¼
Z Z

dxdyq0ðx; yÞeı /ðxÞe ðxÞþkxx½ �þı /ðyÞe ðyÞþkyy½ �þıxcst ; ð144Þ

where the time-dependence of kx; ky has now been made implicit.
Since /ðyÞe ðyÞ is quadratic, y can be integrated over by employing
the stationary phase approximation, while treating x; t; kx; ky as
constants:

sðtÞ ¼
ffiffiffiffiffiffiffiffi
2pı
p

eı/ðyÞa ðy0ðkyÞ;kyÞeıxcstdy
Z

dxeı /ðxÞe þkxx½ �q0ðx; y0ðkyÞÞ; ð145Þ

where dy is the voxel size along the spatially-encoded axis as given
by Eq. (92) (for z), and y0ðkyÞ � y0ðkyðtÞÞ is the position of the sta-
tionary point as a function of25 ky, obtained by solving the following

equation, d/ðyÞa
dy ¼ 0:

y0ðkyÞ ¼ yinitial þ
Ly

cGeTe

� �
ky; ð146Þ

yinitial ¼
Ly

2
� xcs

cGe
: ð147Þ



Fig. 50. Spatially-encoded chemical shift imaging. The signal shown in (a) is the sum of two signals sðtÞ ¼ sð1ÞðtÞ þ sð2ÞðtÞ, originating from two different chemical shifts, xð1Þcs

and xð2Þcs . According to Eq. (91), the signals are of the form sðpÞðtÞ / qðpÞ0 ðz0ðtÞÞeı/a ðz0 ðtÞ;tÞ , where qð1Þ0 ðzÞ;q
ð2Þ
0 ðzÞ are the spin densities being imaged and z0ðtÞ is the acquisition path,

given by Eq. (139). After removing those parts of the phase that are shared by both components – that is, those parts which are independent of the chemical shift (see Eq.

(140)) – the signal becomes sðtÞ / qð1Þ0 ðz0ðtÞÞeıDm1 t þ qð2Þ0 ðz0ðtÞÞeıDm2 t , where Dmp ¼ 1þ Te
Ta

� �
xðpÞcs . (b) The signal is Fourier transformed. The Fourier transform of each spin density

qðpÞ0 ðzÞ occupies a region 1
dt, the width of which is determined by the voxel size. The two regions are separated by Dm2 � Dm1 ¼ 1þ Te

Ta

� �
ðxð2Þcs �xð1Þcs Þ. By filtering out a particular

region (c), the spectral contents of a particular signal sðpÞðtÞ ðp ¼ 1;2Þ can be singled out. All that remains at this point is to Fourier transform back to the time-domain (d),

which is proportional to the image domain and hence to qðpÞ0 ðzÞ.
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The coordinates of the qth point in the set 0;1;2; . . . in Fig. 51a are

ky;q ¼ 2qcGa;yDTa;y; ð148Þ

yq ¼ yinitial þ
2qcGa;yDTa;yLy

cGeTe
; ð149Þ

tq ¼ t0 þ 2qðDTa;y þ DTa;xÞ; ð150Þ

and hence the phase /q � /ðyÞa ðyq; ky;qÞ þxcstq of the qth point is:

/q ¼
2cG2

a;yDT2
a;yLy

GeTe
q2 þ cGa;yDTa;yq

þ 1� Ga;y

Ge

� �
þ DTa;x


 �
2qxcs þ t0xcs: ð151Þ

Eq. (151) is a discretized 2D analog of Eq. (140). The terms that are
independent of xcs are shared by all points and can be removed
using post-processing, while the part proportional to xcs is linear
in q. A particular chemical shift can be singled out by Fourier trans-
forming each row, filtering out the desired peak and transforming
back.

An experimental example of this procedure is outlined Fig. 52.
This was carried out on a sample containing HDO and CHCl3, which
form two immiscible liquid phases. By phase-correcting, Fourier
transforming, filtering the data for each peak along the spatially-
encoded axis, and making an inverse FT, the 2D image arising from
each chemical compound can be recovered – all of this while still
preserving the single-scan nature of the experiment.

6.1.2. Single-scan spectroscopic imaging in inhomogeneous fields
Chemical shift imaging is severely challenged by inhomoge-

neous fields, as variations in the magnetic field will often over-
shadow the differences in chemical shifts, which tend to be
much smaller in magnitude. It is generally impossible to imple-
ment spectroscopic imaging acquisitions in a single-scan under
inhomogeneous conditions. Equally challenged is the spatially en-
coded method: an attempt to acquire such a spectroscopic imaging
data set containing DMSO and HDO under severe B0 distortions is
shown in Fig. 53, where it is seen that phase-correcting and Fourier
transforming the resulting signal does not yield any meaningful
peaks in frequency space. However, the ability of SPEN MRI to ac-
quire images in inhomogeneous fields can be combined with its
ability to spectrally differentiate between images, to resolve this
challenge. Indeed, it was shown in Section 5.4.1 how, by tailoring
the phase profile of the excitation RF and the acquisition gradients,
one can acquire an image in the presence of a non-ideal B0 field,
assuming the chemical shift X was set to zero. The effects of intro-
ducing a non-zero chemical shift on both excitation and acquisi-
tion will now be examined in more detail, and methods to
compensate for these effects will be shown.

During acquisition, the phase of the spins that we shall now
consider will be given by:

/aðz; t2Þ ¼ /eðzÞ þ kðt2Þzþ DxðzÞt2 þX2t2: ð152Þ

On the one hand, the position of the stationary acquisition point is
unaffected by the chemical shift X2, as it is found by differentiating
/aðz; t2Þ according to z (Eq. (112)), which is independent of the X2t2

term. On the other hand, the presence of a chemical shift X1 during
excitation entangles the position z and time t1. When computing
the chirp frequency, /cðtÞ, in our preceding treatment of field inho-
mogeneity, the assumption was made that X1 ¼ 0. However, the ac-
tual phase created by a chirped p

2 excitation pulse is given by Eq.
(13), in which xeðzÞ is dependent on the chemical shift:
xeðzÞ ¼ cGezþ DxðzÞ þX1. Thus, the phase given by Eq. (13) would
have an additional X1ðTe � tzÞ term added to it, where tz, given by
Eq. (124), is a non-linear function of z. This additional term, which
dephases the spins during acquisition, is chemical-shift dependent
and cannot be eliminated using a single p

2 excitation chirp, even
by varying its instantaneous frequency non-linearly. The ap-
proaches introduced in Section 5.4 to compensate for DB0 will fail
when dealing with multiple chemical sites. The essence of this
problem stems from the fact that using just one p

2 chirped pulse af-
fords a single degree of freedom, and yet there are two constraints
now to fulfill. (i) The phase /eðzÞmust be chosen such that the voxel
size (Eq. (110)) remains constant throughout acquisition, and (ii)
that part of the phase /eðzÞ which is dependent on the chemical
shift X1 must be made linear when evaluated along the acquisition
trajectory z0ðtÞ (Eq. (111)). Since z0ðtÞ is linear in t, the second con-
dition is equivalent to demanding that the coefficient of X1 in
/eðzÞbe linear in z. The solution to this dilemma is to introduce an
additional degree of freedom; for instance, employing a second
refocusing p-chirp. With this additional degree of freedom, one
can satisfy both constraints. The reader is referred to reference
[12] for the technical details. The results are reproduced here, car-
ried out on the same sample used in Fig. 53. These results
(Fig. 54) demonstrate the excellent spectral resolution and spatial
definition that two modulated RF-driven encodings can provide,
satisfying both constraints and yielding individual images from
the different chemical sites.

6.2. Single-sweep imaging-derived 2D NMR spectroscopy

Section 6.1 discussed a chemical shift imaging approach, entail-
ing the extraction of multidimensional images corresponding to



Fig. 51. Hybrid chemical shift imaging (see Fig. 43 for pulse sequence). (a) Each spatially encoded column (the circled points 0;1;2; . . .) can be treated as a one-dimensional
experiment with a dwell time of 2ðDTa;x þ DTa;yÞ. For simplicity, assume only the positive rows are used, although the same arguments can be easily applied when using both
negative and positive rows. (b) The phase of each column is quadratic when plotted as a function of q, the index of the points, with the quadratic term independent of the
chemical shift. (c) By removing the quadratic term, the remaining set of points will have a phase linear in both k and the chemical shift, xcs . At this point, the techniques
described previously in, e.g., Fig. 50, can be applied directly.

Fig. 52. Hybrid chemical shift imaging, carried out on a sample of CHCl3 and HDO, which form two exclusive phases within the 5 mm NMR sample. The signals from both
sides can be seen to interfere irregularly. Once rearranged, phase corrected and Fourier transformed over both axes, the individual spectral peaks, corresponding to each of the
compounds, can be clearly seen. By filtering out one or the other and Fourier transforming back along the spatially-encoded axis, the signal originating from each can be
computed and the corresponding image reconstructed.
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different 1D spectroscopic lines in a sample. This section is con-
cerned with the opposite endeavor, namely, to the extraction of
2D spectroscopic data from a spatially-encoded imaging experi-
ment, also within a single-scan. As before, use is here made of
the information contained in the phase of a signal stemming from
the spatially encoded spin ensemble.

The main ideas underlying this alternative approach to
UF2DNMR are summarized in Fig. 55. In Section 6.1 it was shown
how one could extract a 1D spectrum from a spatially-encoded im-
age, acquired in the presence of an acquisition gradient. The posi-
tions of the spectral peaks were determined by the excitation
pulse; within the context of a 2D NMR experiment, the spectrum
thus obtained reflects the peaks along the indirect-domain, X1.
By repeatedly alternating the acquisition gradient, the modulation
of the image imposed by a second, direct-domain chemical shift X2

can become observable along the direct t2 axis. These notions can
be recast in mathematical terms. Following a chirped p

2 excitation,
the phase of the spins in the x̂ŷ-plane is given by Eq. (14). Assum-
ing a symmetric chirp with Of ¼ �Oi ¼ DO

2 ;DO ¼ cGeLe and R ¼ DO
Te

,

and denoting kðeÞmax ¼ cGeTe,

/eðzÞ ¼ �
kðeÞmaxz2

2Le
þ kðeÞmax

1
2
� X1

cGeLe

� �
zþ

kðeÞmaxL 1� 2X1
cGeLe

� �2

8
þ p

2
:

ð153Þ



Fig. 53. Attempted chemical shift imaging on a 5 mm sample containing DMSO and
HDO, in an inhomogeneous field. The field inhomogeneity, modulus of acquired
signal, and modulus of spectral density following phase correction are plotted,
showing the impossibility of differentiating between the two spectral peaks.

Fig. 54. Chemical shift imaging in inhomogeneous fields with B0 correction applied.
The experiment was carried out on the same sample as in Fig. 53. Two chirped
pulses were used, as described in the text, to excite the sample, ensuring the images
have a phase with a quadratic term independent of the chemical shift and a linear
term proportional to the chemical shift. The acquired signal had its quadratic phase
consequently removed, and was Fourier transformed to yield a spectrum, from
which the two images – of the DMSO and the HDO – were filtered.
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The acquired signal, sðk; t2Þ, given by applying the stationary phase
approximation (Eq. (91)), will then mainly originate from the point
z0 for which the acquisition phase /aðk; t2Þ ¼ /eðzÞ þ kzþX2t2 is at

a minimum: d/a
dz ¼ 0. Differentiating and equating to zero, one

obtains:

z0ðk;X1Þ ¼
L
2

1þ k

kðeÞmax

 !
� X1

cGe
: ð154Þ

Note that this point is a function of k and X1 but not of t2 or X2. The
total phase of the signal sðtÞ, given by /aðk; t2Þ ¼ /eðz0ðk;X1ÞÞþ
kz0ðk;X1Þ þX2t2, can then be readily computed as

/aðk; t2Þ ¼
Le

2kðeÞmax

k2 þ Le

2
k� p

2

" #
� X1

cGe
kþX2t2: ð155Þ

Observe that, when viewed as a function of k and t2, this phase ap-
pears to naturally separate into three components; one indepen-
dent of X1 and X2 having both a quadratic and linear dependency
on k, one linear in k and X1, and one linear in t2 and X2. All chemical
shifts will thus share the first term (akin to the quadratic time term
introduced in Section 6.1), which can therefore be removed via
post-acquisition processing. Then, by monitoring the FID in the
presence of an alternating gradient, Ga, one can collect data for mul-
tiple values of k; t2. Viewed in the k� t2 plane (Fig. 55c), Eq. (155)
implies that the acquired data will be modulated along the k-axis
by the indirect domain frequencies, X1, and along the t2 axis by
the direct domain frequencies, X2. A Fourier transform along both
axes then yields a 2D spectrum in one scan, as is illustrated in
Fig. 55.
7. Summary

Spatial encoding, as encompassing the monitoring of spin evo-
lutions on the basis of selective frequency-swept pulses and of
magnetic field gradients, provides a new way for measuring NMR
spectra or MRI images. In contrast to time-domain schemes or to
continuous-wave approaches, these new RF/gradient combinations
can act together to create interaction-dependent spatial patterns of
spin magnetizations or coherences extending throughout a sample.
These patterns can then be read-out with the aid of a second set of
gradients while digitizing the data, to endow NMR/MRI acquisi-
tions with hitherto unavailable capabilities.

The present Review described various facets of these new ap-
proaches to monitor NMR spectra and MRI images. We began with
a thorough introduction on how to visualize the effects of swept RF
pulses – be them of an excitation or refocusing nature – applied in
the presence of linear field gradients. It was then discussed how, in
a spectroscopic setting, the idea of spatial encoding can be
exploited to compress an nD spectroscopic NMR experiment into
a single-scan. Numerous acquisition schemes capable of retrieving
this kind of results for a variety of 2D experiments were presented,
and their relative merits and limitations were surveyed.

Similar ideas were shown to have applications in other spectro-
scopic paradigms involving multi-scan experiments, such as
Hadamard spectroscopy. It was once again shown that by parti-
tioning the sample and exciting different patterns for each site,
one could produce a single-scan, sub-second version of a complex
experiment. Similar versions of multi-scan phase cycling have also
been demonstrated [71].

The final part extended these spatially-selective encoding con-
cepts in what we believe are novel imaging sequences, though re-
lated to decades-old developments in this field. By suitable
excitation protocols, the spins in the sample can, in these MRI set-
tings, be made to interfere destructively – except within a particu-
lar voxel which can be chosen at will. This voxel can be shifted
along a predefined trajectory, set by shaping the acquisition gradi-
ents, yielding a signal proportional to the spin density along that
path. Therefore, spatially encoded imaging differs from conven-
tional Fourier imaging by acquiring images in real rather than in
k-space. The point-by-point nature of the ensuing approach can



Fig. 55. Single sweep spectroscopy. (a) Pulse sequence used. (b) Both the modulus and the real part of the acquired signal are shown as a function of t2, the acquisition time,
for a particular chemical shift X1 along the indirect domain – the actual signal would consist of a superposition of many such signals which would originate from different X1

and interfere among themselves, as illustrated in Fig. 50a. (c) The signal is arranged along the acquisition trajectory in the k� t2 plane, and consequently phase corrected and
Fourier transformed along the k-axis, yielding an echo at X1 (d). From this point onwards, the same post-processing used in UF2DNMR can be applied to extract the 2D
spectrum – compare and contrast with Fig. 17. (e) A 2D TOCSY spectrum acquired experimentally using this methodology, on a sample containing n-butylchloride, dissolved
in CDCl3. The spectrum was acquired on a 500 MHz Varian iNova spectrometer. Parameters used were Te ¼ 19:75 ms; Ge ¼ 0:5 Gauss=cm, a 40 ms DIPSI-2 mixing with a
bandwidth of 10 kHz, N2 ¼ 40;Ga ¼ 40 Gauss

cm , and a total of 3200 acquisition points.

A. Tal, L. Frydman / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 241–292 287
then address a number of challenging measurements, including the
single-scan acquisition of images arising from different chemical
sites, or in the presence of field inhomogeneities.

Overall, it is hoped that as the technical details underlying these
new methods become clearer and as their user-base expands, fur-
ther improvements will materialize and new, unforeseen applica-
tions of spatial-encoding will emerge – both in the spectroscopy
and imaging realms.
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Appendix A. Spatial-spectral pulse design

This appendix concerns itself with the technical details involved
in the design of spatial-spectral (SPSP) pulses, such as those used
throughout Section 4. While this is a known topic in imaging appli-
cations [46], it is not so widely appreciated among NMR spectros-
copists, and hence we deemed its inclusion pertinent. Still, the
design of such pulses draws from several familiar concepts like
the small tip-angle approximation, the associated idea of polychro-
maticity, and DANTE-like pulses; all of and can be discussed before
delving into the particulars of the pulse design involved in custom-
ized spatial-spectral encoding.
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A.1. Small tip-angle approximation

RF excitation pulses are inherently non-linear in nature: the ef-
fect of a pulse is not proportional to its duration or power. For
example, applying a particular on-resonance irradiation for a given
duration might tip the spins by 90� and result in maximal signal,
but doubling the intensity of that RF will not double the signal
strength; on the contrary, it will tip the spins by 180�, and the sig-
nal will correspondingly drop back to zero. However, for small tip
angles, there exists a linear relationship [47] between the applied
RF as a function of time, B1ðtÞ, and the resulting spin profile in
the x̂ŷ-plane as a function of frequency, MþðxÞ; namely, that
MþðxÞ is then proportional to the Fourier transform of B1ðtÞ:

Mðf Þ
þ ðxÞ ¼ ıM0e�ı

xtp
2

Z 1

�1

eB1ðtÞe�ıxtdt þMðiÞ
þ ðxÞe�ıxtp ; ð156Þ

where MðiÞ
þ ðxÞ is the distribution of spins in the x̂ŷ-plane as a func-

tion of offset prior to the pulse, Mðf Þ
þ ðxÞ is the distribution resulting

after applying the RF pulse, M0 is the equilibrium value of the mag-
netization and B1ðtÞ is the RF pulse as a function of time. When

starting out from equilibrium, MðiÞ
xyðxÞ ¼ M0, but in general these

two quantities are independent, and MðiÞ
xyðxÞ can assume any form

– it can, for example, equal the distribution created by a previous

RF pulse, if such was applied. Note that MðiÞ
þ ðxÞ;M

ðf Þ
þ ðxÞ;B1ðtÞ are

all complex numbers which describe a vector lying in the x̂ŷ-plane
of the Bloch sphere, where the real part signifies the x-component
of the vector and the imaginary part signifies its y-component. Fur-

thermore, the quantity eBðtÞ has been introduced, which is obtained
by centering B1ðtÞ about t ¼ 0; that is, if B1ðtÞ is non-zero in the

interval ½0; Tp�, then eBðtÞ � B t � Tp

2

� �
.

The existence of a Fourier relationship between the excitation
profile and the RF pulse facilitates the design of many simple exci-
tation pulses. For example, to excite a sinc-like shape of width Dx
in frequency space, one needs to use a rectangular RF pulse of
duration � 1

Dx, which is the Fourier transform of the sinc function.
Eq. (156) also furnishes an arsenal of useful design tools, all a direct
application of well known Fourier transform relations. For exam-
ple, to shift the excitation pattern in frequency space by an amount
dx, the RF pulse needs to be multiplied by a linearly increasing
phase B1ðtÞ ! B1ðtÞeıdxt . These approximations are also used to de-
sign spatially selective pulses, as a soft pulse which excites a region
½ma; mb� in frequency space will excite a region ½za; zb� in real space
once a gradient G is applied, where za ¼ ma

cG ; zb ¼ mb
cG. Despite its

name, the small tip-angle approximation holds even for fairly large
pulse angles – up to 90� – to a remarkably good degree.
A.2. Polychromaticity

The linearity of the small tip angle approximation reveals that,
if two excitation pulses B1;aðtÞ;B1;bðtÞwith corresponding excitation
profiles MðaÞ

þ ðxÞ;M
ðbÞ
þ ðxÞ are added up, then the combined RF pulse

BðRÞ1 ðtÞ ¼ B1;aðtÞ þ B1;bðtÞ will lead to an excitation profile given by
MðRÞ
þ ðxÞ ¼ MðaÞ

þ ðxÞ þMðbÞ
þ ðxÞ. It turns out that this holds even for

large flip angles, so long as the pulses address different regions
in frequency space. Pulses created this way, by adding independent
sub-pulses, are termed polychromatic pulses [72,73]. The concept
of polychromaticity is very powerful. As an example, consider a
pulse B1ðtÞ which excites a particular region in frequency space,
centered about m0 and having a width Dm. By forming, for example,
B1ðtÞ � B1ðtÞeı2pdmt , one can excite simultaneously two regions of
width Dm, one centered around m0 and the other about m0 þ dm, with
opposite phases (see Fig. 56).
A.3. DANTE pulses

An intuitive approach to selective excitation is presented by the
DANTE sequence [74], which consists of a train of small-tip-angle
pulses spaced Dt apart. As DANTE will also be a common ingredient
of spatial-spectral RF pulses, such a train is briefly outlined in
Fig. 57a, along with the corresponding pattern excited in frequency
space in Fig. 57b. In particular, observe the following:

� The excitation profile is repetitive both in time and in fre-
quency, and is modulated in the latter by an envelope (the
dashed line in Fig. 57b).
� There are three timescales involved; the duration of each hard

pulse, dt, the spacing between the pulses, Dt, and the total dura-
tion of the train, Ta ¼ NðDt þ dtÞ, where N is the number of
hard-pulses applied. Correspondingly, there are three frequency
scales in the excitation profile; the width of each peak, � 1

Ta
, the

distance between peaks, � 1
Dt and the width of the outer enve-

lope, � 1
dt.

� The shape of the outer envelope (the dashed line in Fig. 57b) is
given by the Fourier transform of an individual pulse. In Fig. 57,
the pulses have rectangular shapes, so the overall envelope is
sinc-like.
� The shape of each excitation peak is given by Fourier transform-

ing the overall envelope of the pulse. In Fig. 57a, the envelope is
rectangular (not explicitly drawn), and hence each peak in
Fig. 57b is sinc-like.
� The position of the central lobe in Fig. 57b in frequency space is

determined by the phases of the hard-pulses in Fig. 57a. In par-
ticular, it is possible – as it is with any small tip angle excitation
pulse – to introduce a linearly increasing phase eıka to the kth
peak, which will shift the entire pattern by an amount
Dm ¼ a

Dtþdt.

All of these features can be readily explained by using the small
tip angle approximation and merely Fourier transforming the pulse
train in Fig. 57a to obtain the pattern shown in Fig. 57b.

DANTE pulses can be employed to excite a certain frequency re-
gion as follows. First, choose the total length of the pulse,
Ta ¼ NðDt þ dtÞ, such that the width of each excitation peak 1

Ta
is

equal to the width of the region to be excited in frequency space.
Then, choose Dt small enough that the spacing 1

Dt is larger than
twice the spectral width of the sample; this ensures there is only
one excitation lobe within the spectral range of the sample. Finally,
choose the desired center frequency m0 to be excited, by adding a
linear phase eıka to the pulses. This centers the lobe around the
frequency range m0  Dm

2 that we wish to excite.
A.4. The design of spatial-spectral pulses

The three concepts presented – the small tip angle approxima-
tion, polychromaticity and DANTE pulses – tie in together in the
design of spatial-spectral pulses capable of exciting a SPSP-pat-
tern as shown, for example, in Fig. 29. According to the principle
of polychromaticity, instead of designing a single pulse with that
profile, one can design a pulse capable of exciting a particular
well-defined region in the ðz; mÞ plane of dimensions Dz	 Dm,
centered about some point ðz0; m0Þ, and then add the pulses up.
For example, exciting the pattern in Fig. 29b would entail gener-
ating and adding up 16 RF pulses with appropriate phases:
BðtÞ ¼

P4
k¼1

P4
p¼1eıgk;p Bk;pðtÞ, where Bk;pðtÞ is designed to excite

the kth peak in the pth slice and gk;p is set to either 0 or p to
mimic the form of a Hadamard matrix. The original problem
has thus been reduced to the problem of designing 4	 4 ¼ 16
pulses Bk;pðtÞ, selective in both position and frequency.



Fig. 56. Polychromatic pulses rely on the principle of superposition: the frequency
response of the vectorial sum of two RF fields equals the sum of their individual
responses provided they do not overlap. On the top row, a particular RF field is
given, with its frequency response plotted on the right. On the bottom row, that
field is reproduced with a phase �eı2pdmt , which shifts and inverts its frequency
response, and then adds to itself. The resulting response, shown on the right, is the
sum of the individual responses.

Fig. 58. The design of a spatial-spectral pulse. A spatially selective pulse is
partitioned into N identical copies and applied in the presence of an alternating
gradient. Here, dt is the duration of the positive lobe of the applied gradient and Dt
is the duration of the negative lobe, where dt ¼ Dt. By definition, kmax ¼ cGeTe , the
maximal value of kðeÞðtÞ ¼ c

R
Geðt0 Þdt0 attained throughout excitation. A notational

distinction has been made in order to emphasize the similarity with that of Fig. 57a
was used. An overall envelope serves to set the spectral excitation pattern, and a
linearly increasing phase (not indicated in the figure) serves to center the spectral
excitation lobe.
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By using the small tip angle approximation, one can devise a
pulse that will excite a slab of thickness Dz, centered about z0, in
the presence of a gradient G. The precise form of the pulse will de-
pend on the desired profile. For example, if a rectangular region is
to be excited, a truncated sinc pulse of duration tc � 1

cGDz should be
used, B1ðtÞ / sinc cGDz t � tc

2

� � �
eıcGz0t . Note the linear phase eıcGz0t ,

which maintains the profile’s center at z0. As the sinc pulse is infi-
nite in its extent it must be truncated, and this truncation will lead
to an imperfect rectangular profile. Such issues can be addressed
by the many optimization schemes that abound in the literature
[36,75,37]; the full range of that discussion is outside the scope
of this review.

Having chosen an approach to designing a spatially selective
pulse (e.g., the linear approximation), there is still the problem of
spectral selectivity to be dealt with. Applied as-is, the aforemen-
tioned B1ðtÞ would excite all chemical shifts in the chosen slice
equally. To remedy this problem, the spatial pulse is partitioned
into N identical copies, each of tip angle p=2

N , and each is applied
during the positive iteration of an alternating excitation gradient,
as illustrated in Fig. 58. To gain an understanding of how this af-
fords spectral selectivity, consider the phase acquired by a spin
in the sample having position z and chemical shift x0:
Fig. 57. (a) The DANTE excitation sequence consists of a train of equispaced pulses. T
envelope. In the above figure the shape of the pulses is rectangular, and the envelope is a
It consists of a basic form – the shape of which is the Fourier transform of the envelop
modulation given by the Fourier transform of a single pulse in (a), which is once again
/ðtÞ ¼ x0t þ kðtÞz; ð157Þ
he pulses can have any shape, and can also be modulated by an arbitrary overall
lso rectangular. (b) The corresponding frequency response of the pulse shown in (a).
e in (a), in this case a sinc – repeated infinitely in both directions, with an overall
a sinc.



Fig. 59. (a) A spatial-spectral Hadamard pattern in the z� m1 plane can be created by adding up individual spatial-spectral RF pulses, each exciting a particular region and
phase. (b) The individual RF pulses can be constructed by first designing a spatially selective pulse (1), shifting it (2) by multiplying it by a linear phase, and then employing a
DANTE-like pulse-train design to create the spectral selectivity (3) and shifting it (4) by multiplying the kth pulse in the train by eık2Temshift . Finally, the entire pulse can be
multiplied by the phase (5) corresponding to the appropriate element in the Hadamard matrix.

26 a is a factor – equal to approximately 3 for a Gaussian excitation – inserted to
calibrate the full width at half height (FWHH) of the profile. Bspat;0 is used to calibrate
the pulse tilt angle.
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where, as previously noted, kðtÞ ¼ c
R t

0 Gðt0Þdt0. Note that the total
phase acquired between two temporal points during the excitation,
Dt þ dt apart, is merely

D/ ¼ x0ðdt þ DtÞ: ð158Þ

Since that temporal distance corresponds to a single gradient peri-
od, the total area bound by it equals zero. Eq. (158) reveals that,
while in each gradient iteration the pulse serves to excite a well de-
fined spatial region, the overall evolution on a timescale larger than
a single gradient iteration is dictated by a spin’s chemical shift
alone; in other words, all spins having the same chemical shift will
be affected by the overall envelope of the pulse similarly, regardless
of their position. This is a convenient way of separating the spatial
selectivity from the spectral one.

In effect, the design shown in Fig. 58 mimics that of the DANTE
pulse shown in Fig. 57: like the DANTE, the gradient-refocused
structure will target a spin’s chemical shift, regardless of its posi-
tion. In accordance with the discussion previously presented for
DANTE pulses, one can single out a region of interest in frequency
space: by choosing Ta � NðDt þ dtÞ, one excites a region of width
Dm � 1

Ta
; by taking Dt to be small enough, the spacing 1

Dt can be
made larger than twice the spectral width of the sample, making
the excitation unequivocal and ensuring that no other peaks out-
side the region Dm are targeted; and, finally, by adding a linear
phase to the peaks, one can choose the desired center frequency
m0 one wishes to excite. All this ensures that one excites a region
m0  Dm

2 – and nothing else. Notice also that there is a minor differ-
ence between Figs. 58 and 57: an overall envelope has been added
in Fig. 58. As previously discussed, the Fourier transform of this
envelope dictates the spectral excitation profile. In Fig. 58a Gauss-
ian envelope has been chosen, which will result in a Gaussian re-
gion being excited about the central frequency.

A spatial-spectral pulse capable of exciting a desired Hadamard
pattern – for example, the one in Fig. 31b – can be constructed by
adding RF pulses polychromatically, each of which excites a well-
defined region in the z� m1 plane with a phase corresponding to
an entry in the Hadamard matrix, as shown in Fig. 59a. Thus, the
problem of designing such a pulse can be reduced to the problem
of designing a single RF pulse, capable of exciting a given region
of dimensions Dz	 Dm centered around a particular point
ðzðcÞ; mðcÞÞ in the z� m1 plane. The design of such a pulse is described
next. The design process is outlined in Fig. 59b, with the steps elab-
orated upon in detail below.

1. A spatially-selective pulse, BspatðtÞ, is created, which excites a
slice of width Dz (Fig. 59b-1). Denoting by L the physical length
of the sample, one has L
Dz ¼ Npeaks, as a total of Npeaks slices are

needed to parallelize the 2D Hadamard experiment. To ensure

the desired selectivity, one sets kðeÞmax � cGeTe ¼ 2p
Dz ; dkðeÞ �

cGedt ¼ 2p
L (see Fig. 58), where dt is the physical dwell time dur-

ing acquisition, Te the total pulse duration and Ge the excitation
gradient. As Te will be set below by the spectral requirements, it
can be treated as a constant. Solving for Ge and dt yields:
cGe ¼
2pNpeaks

LTe
; ð159Þ

dt ¼ 2p
cGeL

: ð160Þ
Note that the ratio Te
dt is equal to the number of points used to

digitize BspatðtÞ. The Fourier transform of the shape of BspatðtÞ is
used to determine the profile of the excited region. For example,
BspatðtÞ ¼
Bspat;0 exp � aDX t � Te

2

� �� �2
h i

for 0 6 t 6 Te

0 otherwise

(
;

ð161Þ
would result in a Gaussian profile.26 For simplicity, the RF pulse
should be kept real and symmetrical about Te

2 .
2. Center the spatial excitation profile about zðcÞ (Fig. 59b-2):
BðshiftedÞ
spat ðtÞ ¼ BspatðtÞeıcGezðcÞt : ð162Þ
3. Introduce spectral selectivity (Fig. 59b-3) by oscillating the gra-

dient Ge, as shown in Fig. 58, and apply BðshiftedÞ
spat ðtÞ during each

positive gradient lobe. To ensure sufficient selectivity along
the m1 frequency axis, choose N1 ¼ ð2TeDmÞ, where N1 is the
number of repetitions of the gradient; and to guarantee that
the DANTE-type spectral excitation does not target additional
peaks within the indirect spectral width SW1, select Te ¼ 1

2SW1
.

The form of the resulting spatial-spectral RF pulse is:
BSPSPðtÞ ¼
XN1

k¼0

AkBðshiftedÞ
spat t � 2kTeð Þ: ð163Þ
The discrete Fourier transform of the envelope defined by
A0;A1; . . . ;AN1�1 is proportional to the shape of the spectral
profile.
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4. Center the spectral profile about mðcÞ (Fig. 59b-4) by multiplying
each pulse in the train by a piecewise constant phase:
BðshiftedÞ
SPSP ðtÞ ¼

XN1

k¼0

AkeıkmðcÞ2Te BðshiftedÞ
spat t � 2kTeð Þ: ð164Þ
5. Introduce the desired phase / (Fig. 59b-5) – determined by the
appropriate entry in the Hadamard matrix – by multiplying

BðshiftedÞ
SPSP ðtÞ by eı/.
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Glossary

AM: Amplitude Modulated
COSY: COrrelation SpectroscopY
CSI: Chemical Shift Imaging
DANTE: Delays Alternating with Nutations for Tailored Excitations
DIPSI: Decoupling In the Presence of Scalar Interactions
EPI: Echo Planar Imaging
EPSI: Echo Planar Spectroscopic Imaging
EXSY: EXchange SpectroscopY
fbw: Filter Bandwidth
FID: Free Induction Decay
FM: Frequency Modulated
FOV: Field Of View
FT: Fourier Transform
FWHH: Full Width at Half Height
GRE: Gradient Echo
HSQC: Heteronuclear Single Quantum Coherence
HMQC: Heteronuclear Multiple Quantum Coherence
MRI: Magnetic Resonance Imaging
MRS: Magnetic Resonance Spectroscopy
nD: n-Dimensional
NMR: Nuclear Magnetic Resonance
NOESY: Nuclear Overhauser Effect SpectroscopY
PM: Phase Modulated
SNR: Signal- to-Noise Ratio
UF: UltraFast
UFNMR: UltraFast 2D Nuclear Magnetic Resonance
SPEN MRI: Spatially Encoded Magnetic Resonance Imaging
RF: Radio Frequency
SLR: Shinnar-Le Roux RF pulse design algorithm
SPSP: SPatial-SPectral
SW: Spectral Width
TOCSY: TOtal Correlation SpectroscopY
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