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Abstract

We have recently proposed a protocol for retrieving multidimensional magnetic resonance spectra and images within a single scan,
based on a spatial encoding of the spin interactions. The spatial selectivity of this encoding process also opens up new possibilities for
compensating magnetic field inhomogeneities; not by demanding extreme uniformities from the B0 fields, but by compensating for their
effects at an excitation and/or refocusing level. This potential is hereby discussed and demonstrated in connection with the single-scan
acquisition of high-definition multidimensional images. It is shown that in combination with time-dependent gradient and radiofrequen-
cy manipulations, the new compensation approach can be used to counteract substantial field inhomogenities at either global or local
levels over relatively long periods of time. The new compensation scheme could find uses in areas where heterogeneities in magnetic fields
present serious obstacles, including rapid studies in regions near tissue/air interfaces. The principles of the B0 compensation method are
reviewed for one- and higher-dimensional cases, and experimentally demonstrated on a series of 1D and 2D single-scan MRI experiments
on simple phantoms.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

‘‘Ultrafast’’ MRI methods such as echo-planar imaging
(EPI), can afford multidimensional profiles of a sample in a
non-invasive fashion and within a fraction of a second
[1–6]. Like its Jeener–Ernst n-dimensional (nD) NMR spec-
troscopy counterpart [7,8] EPI relies on a Fourier trans-
formation (FT) of the signals to extract the desired
correlation between intervening Bohr precession frequencies.
Unlike what is done in conventional 2D NMR spectroscopy,
however, where the frequencies to be correlated occupy sepa-
rate portions of the experiment, 2D EPI alternates the relative
contributions of the frequencies defining the spins’ evolution,
so as to deliver the complete 2D time-domain interferogram
following a single excitation of the spins. This ‘‘k-space walk’’
principle can be carried out by switching the intervening
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gradients or by modulating them concurrently, leading to a
variety of related ultrafast acquisition modes [1–4,9–12]. In
an effort to emulate EPIs advantages, we have recently pro-
posed an alternative nD NMR acquisition scheme capable
of affording arbitrarily high-dimensional data sets within a
single scan [13–16]. The resulting ‘‘ultrafast’’ nD protocol is
applicable both within a purely spectroscopic scenario or
within an imaging-oriented one [16,17], and it relies on encod-
ing the NMR interactions one is attempting to measure along
an ancillary inhomogeneous frequency domain. This is most
often introduced by the application of an external magnetic
field gradient, which endows spins located at different posi-
tions with individually addressable frequencies. When
applied in conjunction with a frequency-incremented excita-
tion or inversion of the spins such gradients lead to the possi-
bility of ‘‘spatially encoding’’ the NMR interactions to be
measured. In other words, they allow one to encode an inter-
action X1 with a phase / (r) � CX1 (r � r0), rather than with
the usual temporal encoding / ðtÞ � X:

1t. Patterns encoded
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Fig. 1. Comparison of schemes capable of yielding MR profiles q (z) from
a 1D sample. (A) Conventional scheme where a gradient-driven k-domain
S (t) echo is monitored following a hard pulse, leading after FT to the 1D
profile. (B) Non-FT scheme where positions are initially encoded via the
application of a frequency-swept excitation pulse, and subsequently read
out via the application of a decoding gradient. (C) Idem as (B) but with the
encoding phase profile resulting from an adiabatic p-sweep which follows
the initial hard-pulse excitation of the spins.
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in such fashion can be subject to a mixing process and subse-
quently read out with the aid of an acquisition gradient,
revealing their initial evolution frequencies according to echo
positions arising at k = �CX1. Furthermore, subjecting this
acquisition gradient to multiple oscillations allows one to
monitor the action of a second, direct-domain set of NMR
Hamiltonians. This multiple-readout feature opens up the
possibility to collect multidimensional NMR correlations
within a single scan, irrespective of the details of the NMR
experiment under question.

In addition to enabling the acquisition of multidimen-
sional NMR/MRI data sets within a single scan, the posi-
tion-dependent encoding of the interactions just described
opens up another possibility: the acquisition of high-reso-
lution NMR spectra from bulk samples, even when these
are subject to local or global inhomogeneities of the mag-
netic field. Indeed as we have illustrated in a purely spectro-
scopic scenario [18] the spatial encoding underlying
ultrafast NMR can be exploited to correct, at the time of
the spatially-dependent spin excitation, for the effects that
field distortions will have at a later time when the signal
acquisition will take place. Related compensation princi-
ples have also been demonstrated along direct acquisition
domains with the introduction of so-called ‘‘shim pulses’’
[19]. These procedures do not entail a betterment of the
fields but rather radio frequency (RF) manipulations,
which can address either longitudinal (B0) or transverse
(B1) field distortions by manipulations of the phase and/
or amplitudes of the pulses. The purpose of the present
exposition is to further describe the compensating potential
of the spatial encoding principle within a purely imaging
scenario, where it is positions rather than internal shifts
that are being sought. In particular, we wish to demon-
strate how ultrafast nD NMR and the inhomogeneity-com-
pensating capabilities characterizing spatial encoding
methods can be combined, to enable the acquisition of
high-definition single-scan nD MRI images even when
spins are subject to sizable Xinh (r) spatial distortions of
the ideal B0 static NMR field.

In order to facilitate the visualization of how these com-
plementary features come together, we begin by reviewing
the principles of the spatial encoding methodology as
applied to an ideal nD MRI scenario. We then proceed
to describe the basis of the compensation procedure in
1D MRI, and conclude by sketching its extension to high-
er-dimensional single-scan experiments. All these theoreti-
cal treatments are accompanied with demonstrations of
their validity, using 1D and 2D MRI experiments on sim-
ple phantoms.

2. Spatial encoding: single-scan nD MRI acquisitions in

homogeneous fields

2.1. Spatial encoding in one dimension

We address first the simplest of imaging cases: the map-
ping of a spin-density profile q along a single axis z.
Whereas in traditional Fourier methods, spins are homoge-
neously excited via the application of a single hard pulse
(Fig. 1A), spatial encoding relies on imparting on the spins
an initial spatially-dependent phase /e (z). One possible
way of achieving this is by exciting the spins using a fre-
quency-chirped RF pulse, whose offset O is swept while
in the presence of an excitation gradient Geẑ (Fig. 1B). This
pulse will address spins sequentially according to their
coordinate z at times s (z) when the RF offset matches
the spin’s resonance frequency x (z):

O sðzÞ½ � ¼ xðzÞ ¼ cGezþ X1 ð1Þ
X1 being the site’s chemical shift. For the simplest case of
an offset being swept at a constant rate R between initial
and final values Oi, Of, the instant at which the RF will ad-
dress spins at a coordinate z will be given by

sðzÞ ¼ X1 þ cGez� Oi

R
: ð2Þ

As initially discussed within an imaging context by Kunz
[20,21], this addressing can be used to impart a spatially-
progressive p/2-like excitation of the spins—provided that
the amplitude of the RF field cB1 has been set to an appro-
priate value vis-à-vis the sweep rate R. The kind of sequen-
tial excitation that can then be imposed on the spins
illustrated in Fig. 2, which shows how sweeping an RF field
whose amplitude has been set as cB1 � 0:25

ffiffiffiffiffiffi
jRj

p
induces a

series of time-incremented spin nutations starting from
identical longitudinal states ~M ¼ ½0; 0; 1�, and concluding
with nearly transverse z-dependent magnetizations
~M ¼ cos /eðzÞ; sin /eðzÞ; 0½ �. The overall position-dependent
phases /e (z) accumulated by different z-isochromats over
the course of such sweep are also displayed in this Figure;
they can be expressed (within an arbitrary phase constant)
as

/eðzÞ ¼ /RF sðzÞ½ � þ sp � sðzÞ
� �:

xðzÞ ð3Þ

where sp is the overall duration of the frequency chirped
pulse, and

/RF½sðzÞ� ¼
Z sðzÞ

0

Oi þ Rt0½ �dt0 ð4Þ



Fig. 2. Effects introduced by a chirped RF pulse on selected isochromats, positioned at the indicated fractional z0 coordinates throughout a sample of
length L. These simulations result from a numerical propagation of the Bloch equations with a 2 ls time resolution, and assumed a spatial encoding akin
to that shown in Fig. 1B with the RF being swept at a constant rate over a range cHGeL = 36.8 kHz while in the presence of a Ge = 4 G/cm gradient (i.e.,
sample length = 18 mm). Given a sp = 4 ms pulse length the RFs amplitude was set at cB1 ¼ 0:25:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36:8 kHz=4 ms

p
� 0:8 kHz in order to achieve the

desired p/2 nutations; notice the relatively sudden and nearly complete excitation then achieved by the pulse as a function of z. The lower panels illustrate
the transverse phases accrued by the different isochromats as a result of the RF and gradient application; they verify the assumption given in Eq. (3), which
describes the overall spin phase at the conclusion of sp as the sum of a quadratic component imparted by the RF (dotted parabola) plus a linear z-phase
arising from free evolution under the action of the Ge gradient.
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reflects the rotating-frame phase of the RF pulse at each in-
stant s (z). This contribution to /e is imparted onto spins
positioned at any given coordinate z through the effects
of the RF nutation, whereas the additional contribution
to /e arises from the free evolution of the spins once they
have been excited. The expression for /e can be further
simplified by assuming an on-resonance single-site in-
stance, and initial/final RF offsets chosen so as to excite
a sample of physical length L. These two conditions can
be summarized as

X1 ¼ 0 ð5Þ
Oi ¼ �Of ¼ �cGeL=2; ð6Þ
and lead to an overall phase encoding

/eðzÞ ¼ �
cGeLsp

8
þ cGesp

2

� �
z� cGesp

2L

� �
z2: ð7Þ
This quadratic phase expression is analogous to that
derived by Pipe [22,23], who exploited it in combination
with a number of reconstruction algorithms to retrieve
both spatial and angiographic images. By contrast to these
quadratic reconstruction algorithms the single-scan nD
NMR/MRI protocol delivers its spectral information via
the application of a Gaẑ acquisition gradient, carrying out
an analog FT

SðtÞ /
Z

all z
dzqðzÞ � ei/eðzÞeikðtÞ�z ð8Þ

as a function of the extraction variable

k ¼ c
Z t

0

Gaðt0Þdt0 ¼ cGat: ð9Þ

For a shift-free 1D MRI scenario where spins have been
spatially-encoded as in Eq. (7), the resulting free induction
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decay (FID) will then reflect signals from z coordinates ful-
filling a stationary condition for the overall acquisition
phase

Uðz; tÞ ¼ /eðzÞ þ kðtÞz: ð10Þ
In other words, the signal for any value k (t) will arise only
from those spins located at a zk coordinate, such that

d

dz
½/eðzÞ þ kðtÞz�z¼zk

¼ 0: ð11Þ

Based on the expression in Eq. (7) for /e (z) there is only
one solution to this condition, and it is:

zk ¼
L
2
� R

ðcGeÞ2
� kðtÞ: ð12Þ

Furthermore, for the case of this acquisition being imple-
mented by a constant gradient applied over a time Ta cho-
sen so as to unravel the full extent of the initial encoding
(i.e., GaTa = Gesp), Eq. (12) can be simplified into

zkðtÞ ¼
L
2
� L

T a

� t: ð13Þ

The signal detected in this fashion can be explicitly de-
scribed by expanding the overall acquisition phase around
the relevant extremum:

UðzÞ � UðzkÞ þ
1

2

d2U
dz2

� �
z¼zk

ðz� zkÞ2: ð14Þ

Inserting this into Eq. (8) results in the FID

SðtÞ / eiUðzkÞqðzkÞ
Z

z�zk

dz exp i
d2U
dz2

� �
z¼zk

ðz� zkÞ2=2

$ %

ð15Þ
which, relying on the identityZ 1

�1
dzeiaz2 ¼

ffiffiffiffiffiffiffiffi
p

2jaj

r
1þ i:sgnðaÞ½ �; ð16Þ

leads to a signal having an absolute value

jSðtÞj /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
d2U
dz2

��� ���
z¼zk

vuut qðzkÞ: ð17Þ

Eqs. (13) and (17) mean that the time-domain signal will in
this case probe the spins’ density q (z) in a one-to-one fash-
ion, interrogating spins from the position that was excited
last (assumed to be zf = L/2) and walking its way ‘‘back-
wards’’ to the position that was first excited by the frequen-
cy chirp (zi = �L/2). As for the weighting factor appearing
in the collected FID,
1 An analogous expression given earlier, Eq. (6b) in Ref. [24], mistakenly
contains an additional 4cGespz linear term.

2 In that previous 2D-oriented publication, the encoding time sp � s was
referred to as t1 and the acquisition time t as t2.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

d2U
dz2

��� ���
z¼zk

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
d2/e

dz2

��� ���
z¼zk

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffi
j2pRj

p
jGej

; ð18Þ

it defines the spatial extent Dz that will contribute to the
signal of a particular q (zk) voxel or, in other words, it is
the spatial resolution of the method. An important feature
of this parameter is its independence on position z and on
the acquisition variables k/t. This in turn is what guaran-
tees that a constant point spread function will arise simply
by monitoring the intensity of the FID signal as a function
of time.

For the sake of completion, it is worth reviewing a sec-
ond spatial encoding alternative, this one arising from the
action of a frequency-swept p-pulse driving an inversion

of the spins coming in the wake of an initial, homogeneous
hard-pulse excitation (Fig. 1C). Following the arguments
above as well as guidelines described elsewhere [24,25],
one can estimate the overall encoding imparted during
the course of such inversion pulse as

/eðzÞ ¼ �s:zxðzÞ þ 2/RFðszÞ þ ðsp � szÞ:xðzÞ: ð19Þ
On comparing this expression with its analogue for the case
of a frequency-chirped p/2 excitation (Eq. (3)) we notice an
additional term �s:zxðzÞ reflecting the encoding accumulat-
ed prior to the instant sz when the p inversion pulse reached
an offset x (z), and a doubling of the net /RF influence.
Following the same assumptions as before (X1 = 0;
Oi = �Of = �cGeL/2; R = cGeL/sp) this encoding phase
can be written as1

/eðzÞ ¼ �
cGeLsp

4
� cGesp

L

� �
z2: ð20Þ

Main distinctions thus resulting between this p-driven
encoding and that arising from its p/2 counterpart
(Eq. (7)) include the absence of a linear term, and a
doubling of the quadratic coefficient. The first of these
features implies that upon imposing the stationary phase
approximation the decoded positions will be given by

z½kðtÞ� ¼ � 2R

ðcGeÞ2
� kðtÞ: ð21Þ

The initial position thus rasterized will correspond to the
center of the sample, meaning that the full field-of-view
(FOV) will be missed by the signal acquisition process un-
less an initial ‘‘purging’’ gradient pulse kprg = �cGesp/2 is
first applied. As for the second of these features it implies
that, given identical conditions, the p-driven encoding will
be characterized by a voxel size that is

ffiffiffi
2
p

time smaller (i.e.,
by a

ffiffiffi
2
p

higher resolution) than its p/2 encoding
counterpart.

These expressions summarize the main features of spa-
tially-encoded single-scan nD NMR, as applied to 1D
MRI experiments. Fig. 3 exemplifies their experimental
realization as applied to the profiling of a simple water
phantom. Several features of this acquisition method had
been presented in part in an earlier publication [17];2 also
compared there in further detail were issues concerning
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Fig. 3. Experimental illustration of the capability of the various pulse sequences introduced in Figs. 1A–C to afford 1D profiles of a sample. The phantom
used in these experiments consisted of a uniform water-based polyacrylamide gel filling a 5 mm NMR tube, doped near its center with a CoCl2 solution.
The observation coil was nearly 18.5 mm in length, and the paramagnetic dope led to a low signal-intensity region ca. 3 mm long. Like all remaining
experiments detailed in this study, these measurements were carried out at 501 MHz using a Varian iNOVA� NMR console. (A) Image arising by FT of an
echo FID recorded under the action of a �5 G/cm longitudinal gradient, digitized over 5 ms using a 10 ls dwell time. A 2.5 ms long gradient pulse with
Gprg = 5 G/cm and a 5 ms free evolution time (to enhance the T2 contrast) were introduced prior to the acquisition. (B) Spatially-encoded images collected
with Ge = �Ga = 5 G/cm, 5 ms long excitation (sp) and acquisition (Ta) times, and a 2 ls acquisition dwell time. A p/2 chirped RF pulse sweeping over
±21.5 kHz with an amplitude cB1 � 750 Hz was used for the spatial encoding, and a 5 ms free evolution delay was inserted prior to the actual data
decoding. The image in red arose from taking the absolute value of the as-collected FID; the black image arose from subjecting the same data to a
numerical filtering suited to caGaDz (rather than to caGaL) before the magnitude calculation. (C) Idem as in (B) but with the encoding arising from a 2.5 ms
long, 1600 Hz strong p inversion pulse, applied following a hard-pulse excitation.
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the overall sensitivities and demands on field gradients of
the conventional vis-à-vis the spatially-encoded imaging
approaches. It was then concluded that whereas the former
could be made comparable by applying suitably matched
filtering functions (black vs red profiles in Figs. 3B and
C), conventional imaging makes a more efficient use of
its excursion along the k-domain—monitoring signals from
all voxels in the sample at once, rather than unraveling
them in a voxel-by-voxel fashion. It follows that for a given
number Nk of spatial elements, the wavenumber kmax = -
GaTa to be used in the spatial encoding case has to exceed
its conventional counterpart by a factor

ffiffiffiffiffiffi
Nk
p

. This may
often be a serious complication yet not always will it be
an incapacitating one (for instance along the read-out
dimension of a single-scan 2D EPI experiment); it is also
possible that quadratic reconstruction algorithms [22,23]
might also be of help to alleviate this feature. Yet another
main difference between the methodologies is given by the
built-in capabilities of the spatial encoding to compensate
experimentally for field distortions, as further discussed in
the last two Sections. Before going into this topic, however,
we briefly describe how the 1D spatial encoding principle
described in this Paragraph can be extended to single-scan
acquisitions in multiple dimensions.

2.2. Spatially-encoded single-scan multidimensional MRI

Single-scan nD NMR relies on the fact that the spatial
encoding procedure just described can deliver its informa-
tion by the application of a field gradient. Since gradient
effects can be reversed with nearly complete efficiency with-
in arbitrarily short periods of time, spatial encoding
enables one to monitor spectral distributions along multi-
ple dimensions in a continuous ‘‘ultrafast’’ fashion. Such
an extension to multiple dimensions does not necessarily
imply that all domains to be explored need to be spatially
encoded: performing the spatial encoding procedure along
a given axis does not preclude the use of a conventional
Fourier encoding along another orientation. Without
attempting to present an exhaustive description of possibil-
ities, Fig. 4 exemplifies this flexibility by presenting four
different non-EPI approaches to the collection of 2D
NMR images within a single scan. Also included in this
Figure are cartoons depicting the different kinds of r/k-do-
main scannings that occur in each scheme. Fig. 4A presents
a sequence where spins that have been spatially encoded
along one axis, have their 1D profiles repeatedly rasterized
during the course of the acquisition while another gradient
incrementally ‘‘blips’’ their phases along an orthogonal
domain. Fig. 4B is another r/k-encoding hybrid, where it
is the spatial encoding dimension that now gets incremen-
tally unraveled while the orthogonal axis is repeatedly
imaged in reciprocal space via the application of a strong
oscillatory gradient. Fig. 4C is a purely spatially-encoded
2D MRI possibility where orthogonal quadratic encoding
phases are generated by frequency-swept excitation (p/2)
and inversion (p) pulses, applied consecutively while under
the action of corresponding gradients. Fig. 4D is another
pure spatially-encoded alternative where a different qua-
dratic pattern was generated by applying a pair of adiabat-
ic p inversions following an initial homogeneous excitation,
and the ensuing spatial encoding is subsequently unraveled
in an out-spiraling fashion.

The hybrid cases depicted in Figs. 4A and B combine a
unidimensional spatial encoding along one of the dimen-
sions, with a conventional k-domain encoding along an
orthogonal axis. The image formation process underlying
these sequences can thus be directly derived from the unidi-
mensional arguments given in the previous Paragraph,
applied along orthogonal dimensions. Presented in Figs.
5A and B are experimental realizations of these two proce-
dures, including for clarity some of the intermediate pro-
cessing stages. Both of these experiments involved the
continuous acquisition of a single-scan FID containing
data in the mixed spatial–/wavenumber–domain (z,kx);
these data had to be suitably rearranged prior to further
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Fig. 4. Examples of different schemes that, with the aid of spatial encoding principles, can afford 2D MRI profiles within a single transient. (A) Hybrid
scheme introduced in Ref. [17], relying on an initial Ge-driven encoding along one axis coupled to repetitive decoding echoes separated by small phase
incrementations along the orthogonal direction. (B) Hybrid scheme were the roles of (A) have been reversed, and a single spatial decoding is interrupted by
numerous repetitive k-domain acquisitions. (C) Purely spatial encoding alternative, where following an initial p/2-p encoding along orthogonal axes the
image is rasterized along a zigzag trajectory. (D) Spatial encoding alternative whereby the profile is rasterized by an outward-expanding spiral trajectory.
Shown for clarity are the k/r-space trajectories executed in each case, with dots representing the digitized data points.
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Fig. 5. Results obtained upon applying different single-scan 2D imaging protocols on a water-filled 5 mm NMR tube, with z representing the long axis of
the sample. Shown on top are magnitude plots of the time-domain signal as collected in the spectrometer; the center row illustrates the same data after
being correctly rearranged in their corresponding k/r spaces; plotted on the bottom are the 2D images arising from suitable FT (1D for A and B; 2D for C)
of these rearranged data. (A) Experiment acquired using the hybrid z/Dkx encoding depicted in Fig. 4A with Ge = 5 G/cm, sp = 5 ms, kmax

x ¼ 1:6 mm�1,
Ga = 26 G/cm, N2 = 16. (B) Experiment acquired using the hybrid kx/Dz encoding depicted in Fig. 4B with: Ge = 5 G/cm, sp = 5 ms, kmax

x ¼ 1:6 mm�1,
N2 = 16, kx scanning times of 950 ls, and Dz increments arising from pulsing 15 G/cm gradients over 50 ls. (C) 2D EPI experiment arising from a
sequence akin to that in Fig. 4B except for the fact that the initial excitation preceded the first gradient and was given by a hard p/2 pulse; other acquisition
parameters involved Ge = 1 G/cm, sp = 1 ms, kmax

x ¼ 5:8 mm�1, Gx
a ¼ �14:5 G=cm, Gz

a ¼ 1:2G=cm, N2 = 16. In all experiments, data were digitized at
40 kHz.
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processing. In the (A) case, this entailed a splicing of the
individual z profiles, and their suitable rearrangement in
a 2D matrix (including alternating reversals of the even/
odd images) as a function of monotonically increasing kx

values. In (B), the S (kx) echoes were the ones which had
to be spliced, reversed, and subsequently positioned in a
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2D matrix as a function of a monotonically rasterized z

coordinate. Finally, in both cases, a 1D FT along the kx

dimension—preceded and/or followed by suitable ancillary
manipulations such as zero-filling, weighting, echo align-
ment procedures, magnitude calculations, etc.— are needed
for obtaining the full 2D image. Presented for completion
in Fig. 5C is a single-scan image collected using a tradition-
al blipped k-space EPI encoding.

Figs. 4C and D present alternative approaches to single-
scan 2D imaging, this time based entirely on spatial encod-
ing principles. The first of these cases involves an initial p/2
excitation pulse chirped while in the presence of a Gz

eẑ gra-
dient, followed by a p sweep executed while under the
action of Gx

ex̂. As a result of the spin inversion associated
with the RF p pulse the total encoding then becomes a dif-
ference between Eqs. (20) and (7):

/eðx; zÞ ¼ �
cGx

eLxsx
p

4
�

cGx
es

x
p

Lx

� �
x2

� 	

� �
cGz

eLzsz
p

8
þ

cGz
es

z
p

2

� �
z�

cGz
es

z
p

2Lz

� �
z2

� 	
: ð22Þ

Application of the EPI-type decoding scheme illustrated in
Fig. 4C will thus yield an FID whose magnitude records
the q (x,z) sample profile in real space, starting from one
end of the sample and then rastering the object along a zig-
zag trajectory towards the opposite corner. Fig. 6A pre-
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)mm 6(

A

Fig. 6. Results obtained upon applying the purely spatial encoding single-sc
exemplified in Fig. 5. Unlike those earlier examples only rearrangements of the
encoding in (A) employed 5 ms p/2 and p chirped pulses applied in the presenc
Gx

a ¼ 0:4 G=cm, Gz
a ¼ 25 G=cm, N2 = 16. The spatial encoding in (B) was impo

presence of 4 G/cm gradients; the decoding involved eight gradient oscillations r
the clear (x,z) profiles observed in (A)’s 1D time-domain signal, as well as of
sents an experimental example of the corresponding
image, once again collected for a simple cylindrical water
phantom. Notice in it a ‘‘ribbed’’ structure along the z

direction, associated to the relatively coarse zigzag chosen
for this particular acquisition. By contrast to Eq. (22),
the encoding procedure illustrated in Fig. 4D will result
on the purely quadratic form

/eðx; zÞ ¼ constant �
cGx

es
x
p

Lx

� �
x2 þ

cGz
es

z
p

Lz

� �
z2: ð23Þ

The initial (x0,zo) = (0, 0) coordinate at which the ensuing
decoding will thus begin, makes this approach particularly
well suited for a spiral-like decoding involving oscillating
and time-incremented orthogonal gradients. Fig. 6B illus-
trates a phantom image obtained in this fashion. Notice
that by no details regarding a coarse rasterization of the
image are row evident. A point worth remarking again in
connection to the spatially-encoded acquisitions displayed
in Figs. 6A and B, is that no Fourier processing is needed
for arriving to these single-scan 2D images. Therefore the
absence of an equidistant grid of points within the bidimen-
sional FIDs afforded by these spatially-encoded procedures
constitutes a minor graphic-display inconvenience rather
than, as is the case for FT-based k-domain acquisitions,
an actual complication to be dealt with by numerical algo-
rithms [1,2,26].
z
)mm 02( x

)mm 6(

ata

time (ms)0 32

π−π Spatial Encoding
  Spiral Decoding

ent
d)

B

an 2D variants illustrated in Figs. 4C and D, to the same water profile
collected data—no FTs—were involved in the image retrieval. The spatial

e of Gz
e ¼ 5 G=cm, Gx

e ¼ 2:5 G=cm, respectively; decoding used an effective
sed (along both axes) by applying 5 ms long adiabatic p pulses while in the
eaching to a maximum of 15 G/cm. Notice in this latter case the absence of
the ‘‘ribs’’ characterizing the 2D image in (A) along the z axis.
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Fig. 6 exemplifies just two out of the numerous strategies
by which purely spatially-encoded MRI procedures could
be used to retrieve multidimensional images. Other possibil-
ities—involving two or three dimensions, p/2 or p encoding
pulses, etc.— can also be conceived. Assuming an ideal
decoherence-free spin system, the in-plane rotating-frame
magnetization patterns arising prior to the signal acquisi-
tion from any of these encoding procedures will be given by

MxyðrÞ ¼ qðrÞei/eðrÞ; ð24Þ
where

/e r ¼ ðx; y; zÞ½ � ¼
X

a¼x;y;z

aa þ ba � aþ ca � a2

 �

ð25Þ

is a quadratic excitation phase encoded by the action of
chirped pulses along the multiple spatial dimensions. In
parallel to Eq. (8), the FID arising upon such pattern while
executing a multidimensional ‘‘walk’’ through k-space,

SðtÞ /
Z Z Z

all r

drqðrÞ � ei/eðrÞeikðtÞ�r; ð26Þ

will reflect the rasterized q (r) spatial profile of the spins.
The particular coordinate rk (t) decoded for a given k (t) val-
ue, will be the one fulfilling the 3D stationary phase
condition

rr /eðrÞ þ kðtÞ � r½ �r¼rk
¼ ð0; 0; 0Þ () ð27aÞ

ka ¼ �ba � 2ca � a: ð27bÞ
An extension of the one-dimensional Taylor-expansion
arguments given for the 1D case (Eq. (15)) can also yield
the spatial resolution of the ensuing jS (t)j aq (rk) voxel ele-
ment. In the 3D case, this will be related to the determinant
of the Hessian matrix

Qij ¼ Dij½/eðrÞ þ kðtÞ � r�
� 

i;j¼x;y;z
; ð28aÞ

D ¼
o2=ox2 o2=oxoy o2=oxoz

o2=oyox o2=oy2 o2=oyoz

o2=ozox o2=ozoy o2=oz2

0
B@

1
CA; ð28bÞ

when evaluated at the particular coordinate rk. Based on
Eq. (27a) this yields

jSðtÞj /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3

j detðQÞjr¼rk

s
qðrkÞ ð29aÞ

¼
Y

a¼x;y;z

ffiffiffiffiffiffiffi
p
jcaj

r
qðrkÞ: ð29bÞ

Unidimensional arguments can also be extended in a
straightforward fashion to derive the FOVs along the inde-
pendent axes, as well as to compare the demands that pure-
ly spatially-encoded vis-à-vis traditional EPI-encoding
make in terms of gradient strengths, etc. Yet rather than
continuing with these extensions we turn to the central top-
ic of how to integrate field inhomogeneity compensations
into the spatial encoding procedure.
3. Spatially-encoded 1D MRI in the presence of field

inhomogeneities

3.1. Compensating for field inhomogeneities

For the sake of simplicity we begin by describing the
retrieval of undistorted one-dimensional q (z) profiles in
the presence of field inhomogeneities, leaving for the last
Section an extension to higher-dimensional cases. Fig. 7
illustrates experimentally the actual capabilities of the
approach, comparing for a simple water phantom
results obtained in the presence and absence of inhomo-
geneities, when utilizing both conventional and
spatially-encoded 1D MRI approaches under similar gra-
dient-strength conditions. Upon executing either one of
the imaging procedures described in the previous Section
while under the action of similar B0 inhomogeneities, all
methods will fail to deliver faithful representations of
the object. The distortions imparted by these inhomoge-
neities onto the Fourier- and spatially-encoded images
will, as expected, be different. And while ideally such
distortions could be accounted for at a post-acquisition
level via numerical compensation procedures [1,27,28],
these compensations tend to be numerically unstable
and therefore restricted under limited signal-to-noise
conditions. On the other hand, owing to the voxel-by-
voxel encoding and read-out involved in the spatial
encoding procedures introduced in the previous Section,
the latter have a built-in capability of restoring at an

experimental level the faithfulness of the collected image.
This capability is illustrated by the trace in Fig. 7E, col-
lected using the same average gradient strength as the
profile in Fig. 7D, but following a suitable temporal
shaping of the RF encoding pulse and of the subsequent
decoding gradient. Such shaping does actually require an
a priori knowledge of the field inhomogeneity profile
cDB0 (z) = Xinh (z); yet given this knowledge the proce-
dure can compensate distortions using gradients whose
span is only a few times larger than the inhomogenei-
ties—ca. a factor of four for the case illustrated in
Fig. 7.

Recording such undistorted q (z) profiles while in the
presence of field inhomogeneities, will require restoring
the two basic conditions which defined the ideal spatial-
encoded image formation process: a linearity between

coordinate z and the acquisition time t (Eq. (13)), and a
constant pixel size Dz throughout the acquisition process

(Eq. (18)). The physics that define these two parameters
will not change fundamentally upon going from a
homogeneous- to an inhomogeneous-field acquisition;
voxels will still be decoded according to the stationary
phase condition

dU
dz

����
z¼zkðtÞ

¼ 0; ð30Þ

and spatial resolution will still be defined by
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ig. 7. Experimental demonstration of the field-compensating principles
escribed in this work, for the case of the 1D phantom introduced in
ig. 3. (A and B) FT and spatially-encoded profiles collected from the
hantom under conditions similar to those detailed in that Figure: 5 G/cm
xcitation and acquisition gradients, 10 ms average free-evolution times,
8.5 mm long samples, etc. (C and D) Idem as in (A and B), but upon
ubjecting on the sample an artificial Xinh (z) = 1.31z � 0.193z2 kHz (with

the displacement away from the sample’s center in mm). This
homogeneity was introduced by distorting the z, z2 magnet shims, and
as characterized by mapping the water resonance using a simple
radient-echo sequence. (E) Idem as in (D) but after inserting the mapped
homogeneity profile into the algorithm described in the text, recalcu-
ting from it the correcting RF sweep and acquisition gradient patterns,

nd applying these for the acquisition of the data. The most remarkable
eature of this compensation procedure (and therefore a basic test of its
orrect functioning) is the fact that it enabled the signal to perdure in the
ime domain, long after either the conventional k-space or its analogous
patially-encoded signal have both decayed into the background noise.
his, in spite of Xinh spanning over 25 kHz and of the experiment still

equiring Ge = �5 G/cm, and an average Ga = +4.13 G/cm over the
cquisition. Notice that although still not ideal, the ‘‘wiggles’’ exhibited by
his experimental Xinh-compensated profile are akin to those of its
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DzðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

d2U
dz2

��� ���
z¼zkðtÞ

vuuut : ð31Þ

The effects of the field inhomogeneities will be expressed by
the fact that there will now be an additional contribution
defining the overall phase U (z) arising from Xinh (z)—ef-
fects which will have to be compensated out. To visualize
how this distortion can be removed we will assume for con-
creteness that spins were excited by the action of a swept p/
2 chirped RF nutation.3 The Xinh (z) contribution will be
given by an extra term in the excitation phase

/eðzÞ ¼ /RF½sðzÞ� þ ½sp � sðzÞ�: cGezþ X1 þ XinhðzÞ½ � ð32Þ
as well as by an addition to the overall acquisition phase

Uðz; tÞ ¼ /eðzÞ þ k � zþ XinhðzÞt: ð33Þ
If the encoding and decoding processes were to proceed as
in the homogeneous case it is clear that these new terms
would break both the linear z/t relation as well as the con-
stant voxel size demand, leading to distortions such as
those illustrated in Fig. 7D. Yet we can ‘‘force’’ a reintro-
duction of the ideal behavior by tailoring at least two of the
several free parameters at our disposal; these include
/RF [s (z)] (i.e., the shape of the RF encoding pulse), k (t)
(i.e., the shape of the acquisition gradient Ga and/or of
the dwell time Dt), as well as the encoding gradient Ge. In
the present exposition, we have chosen /RF [s (z)] and
Ga (t), in order to carry out the corrections.

The demand for a linearity between z and t can be used to
derive the shape of the acquisition gradient. Todo so we insert
Eq. (33) into expression 30, and solve for cGa (t) = dk/dt

cGaðtÞ ¼ � d

dt
d/eðzÞ

dz

� 	
� t � d

dt
dXinhðzÞ

dz

� 	
� dXinhðzÞ

dz

� �
z¼zðtÞ

;

ð34Þ
The t-dependence in this expression can be translated into a
z-dependence (or vice versa) by imposing the demand

zðtÞ ¼ L
2
� L

T a

� t() d

dt
¼ � L

T a

d

dz
; ð35Þ

which transforms Eq. (34) into a single-variable second-or-
der differential expression. Although Xinh (z) is an a priori

mapped function, solving Eq. (34) still requires knowledge
of the /e (z) function—or better said, of its second spatial
derivative—appearing on the first right-hand term. The
definition of this function will stem in turn from demand-
ing a constant pixel size throughout the acquisition. In
other words, we shall design the initial encoding experi-
enced by the spins during their excitation in such a way,
so that when coupled to the cumulative dephasing effects
of Xinh (z) the overall result will be a time-independent Dz

throughout the course of the acquisition. It follows from

omogeneous counterpart in (B). Simulations indicate that these reflect in
oth cases limitations of the chirped excitation pulse in delivering the
esired profile, rather than in an actual failure of the compensation
rocedure.

3 The description for the case of a p-based encoding follows very similar
(and in fact somewhat simpler) lines.
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4 It appears that in the small inhomogeneity limit jdXinh (z)/dzj � jcGej,
r e p lac in g i n Eq. ( 3 9 ) d/eðzÞ

dz =bcGe þ dXinhðzÞ
dz c by ðd/eðzÞ=dzÞb1�

dXinhðzÞ=dz
cGe

c=cGe could further aid in the calculations, even if we have not
exploited this so far.

5 Many of these cases actually reflect our reliance on a continuous
frequency-swept pulse for achieving the desired /RF (s) pattern, which
although a natural choice for implementing the encoding under homoge-
neous field conditions may no longer be optimal in the presence of field
inhomogeneities. In such instances other excitation/inversion algorithms
[29–31], might be more useful generators of the arbitrary profiles being
sought.
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Eq. (31) that such constant-voxel demand is mathematical-
ly equivalent to requesting

d

dt
d2UðzÞ

dz2

� �
z¼zðtÞ

¼ 0: ð36Þ

Inserting into this expression the definitions given in Eqs.
(33) and (35), results in demanding that /e (z) and Xinh (z)
be related by

d3/eðzÞ
dz3

¼ � T a

L
d2XinhðzÞ

dz2
þ ðz� L

2
Þ d

3XinhðzÞ
dz3

� �
: ð37Þ

Notice that according to this derivation, the voxel size
correction: (i) is introduced at an excitation but not at
an acquisition level; (ii) will not be needed if Xinh’s
effects are linear (which would introduce a constant dis-
placement of the image but no intra-voxel distortions);
(iii) will only affect third and higher orders of /e (z)
(terms which were absent in the homogeneous case,
Eq. (7)); and (iv) will allow by a single integration for
the calculation of the acquisition gradientGa (t), pending
certain simple boundary conditions that we proceed to
discuss.

Eq. (37) defines the encoding profile that we would
like applied on the spins, as a function of their
z positions. This /e (z) profile depends on fixed param-
eters we shall assume known (Ge, X1 and Xinh (z) in
Eq. (32)), as well as on an RF-driven phase
/RF½sðzÞ� ¼

R s ðzÞ
0

Oðs0Þds0. This spatially-dependent phase
profile we can control in a number of ways; for
example by defining the instant s (z) at which a
particular RF offset O being continuously swept reach-
es and excites spins resonating at a frequency
x (z) = cGez + X1 + Xinh (z). To visualize how the result-
ing O (s) sweep provides sufficient flexibility to design
the desired /e (z) profile, we shall assume for simplicity
a null chemical shift. Taking then the spatial derivative
of Eq. (32) (as constant phase terms in the end are
unimportant) one ends up with

d/eðzÞ
dz

¼ O½sðzÞ� � ds
dz
þ ½sp � sðzÞ� cGe þ

dXinhðzÞ
dz

� �

� ds
dz
� ½cGe þ XinhðzÞ�: ð38Þ

Since the offset also has to fulfill the condition
O [s (z)] = cGez + Xinh (z), the first and last terms on the
right-hand side of this expression will cancel each other
out; one can then solve for s (z) as

sðzÞ ¼ sp �
d/eðzÞ

dz

cGe þ dXinhðzÞ
dz

j k : ð39Þ

The expression for d/e/dz involved in this equation can be
obtained from the Xinh (z) profile following a double inte-
gration of Eq. (37), subject to the initial and final boundary
conditions of the RF sweep

sðzf ¼ L=2Þ ¼ sp; sðzi ¼ �L=2Þ ¼ 0: ð40Þ
Notice that after the first of these integration processes, all
the functions required to define the cGa (t) gradient profile
(Eq. (34)) become known. Finally, the last step in deriving
the RF offset profile to be used in the experiment, requires
inverting s (z) into z (s), and plugging the result into
O (s) = cGez (s) + Xinh [z (s)].4

From an experimental standpoint, it is often simpler to
program the resulting pulse as a phase table /RF (s), to be
read at a constant dwell Ds by the spectrometer’s RF gen-
eration hardware. Moreover, since the inhomogeneity will
in general affect the rate at which the RF sweeps any given
range of frequencies, it also follows that the amplitude of
the RF may have to be tailored during the clocking out
of the pulse. Indeed as mentioned earlier (and as derived
in the Appendix of Ref. 17), the strength cB1 of a chirped
pulse that is swept at a constant rate R can be calibrated
so as to impart a (non-adiabatic) p/2 nutation of the spins.
This in turn requires setting cB1 � 0:25

ffiffiffiffiffiffi
jRj

p
, which is a

constant for the homogeneous-field scenario. In the inho-
mogeneous field situation by contrast the sweep rate
R = dO/ds is no longer constant, and hence spins posi-
tioned at different z coordinates will be nutated by different
extents unless the B1 field is suitably compensated for this.
This can be simply done by setting a second, amplitude-
modulating table as part of the pulse definition with
cB1 (s) defined as 0.25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdOðsÞ=dsj

p
; not accounting for this

leads to image distortions, as further illustrated below.

3.2. Limitations of the compensation procedure

Having derived the conditions under which the spatial
encoding protocol can compensate for 1D field inhomoge-
neities, it is pertinent to discuss what will be the limits of
such procedure. Some of these may arise from non-coher-
ent decay factors (T2, diffusion, motions) that will not be
here addressed. But we have also identified two main meth-
odological limitations worth discussing. One of these arises
from our demand that the s (z) in Eq. (39) be invertible into
a z (s) expression. Numerical simulations for various arbi-
trary Xinh (z) profiles reveal a variety of instances where,
for large enough inhomogeneities, this is no longer possi-
ble.5 In principle one should be able to accommodate the
profile requested by the compensation as long as x (z) is
a univalued function, where each z voxel can be addressed
independently and at will by an RF pulse of duration sp.
This in turn requires that dx(z)/dz „ 0 throughout the
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Fig. 8. Graphical explanation of how the onset of multiple roots may limit
our proposed method of spatially-encoded field compensation. Shown on
the left- and right-hand columns are numerically calculated profiles
describing the evolution of phase encoded within a �9 6 z 6 9 mm long
sample, as a function of the data acquisition time. In both cases the
samples were assumed to have been excited with 4 ms long p/2 chirped
pulses and constantly subject to an inhomogeneity Xinh (z) = 1.4z2 (in kHz
and mm); an encoding gradient Ge = �9.4 G/cm was used in the left-
column case while Ge = +9.4 G/cm for the right-hand scenario. The
compensating algorithm described in the text was used in both instances,
leading to detectable signals corresponding to the stationary-phase voxels
indicated in all graphics by the thicker red traces. Notice that whereas in
both cases the algorithm leads to an unraveling of the sample that
proceeds, as desired, linearly in time, longer evolution times lead in the
right-hand column to the appearance of a second region of flat phase
whose signal will also contribute to the FID. As detailed in the text and
illustrated in this Figure, such artifacts can be avoided by a judicious (and
not necessarily harsher) choice of the encoding/decoding conditions.
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course of the encoding; assuming that the inhomogeneity
gradients we are dealing with are smaller than the cGe gra-
dient,6 this translates into requesting

jcGej >
dXinhðzÞ

dz

����
����8z 2 ð�L=2; L=2Þ: ð41Þ

A second, physically different limitation to the method
described in the previous Paragraph is posed by the effects
that will be introduced by Xinh (z) during the course of the
acquisition, which entailing a time Ta that is usually longer
than sp may eventually control the maximum limits of tol-
erable inhomogeneities. These longer-term distortions are
mathematically represented by the multiple zk (t) roots that
for long enough acquisition times t, will be able to satisfy
the condition stated in Eq. (30). Indeed, when considering
in this equation k and t as fixed parameters, one realizes
that the signal detected at any given time will contain con-
tributions from all z coordinates fulfilling the stationary
phase condition

d/eðzÞ
dz

þ dXinhðzÞ
dz

� t þ k ¼ 0: ð42Þ

In the Xinh = 0 case /e (z) is a second-degree polynomial,
and thus only a single zk value (Eq. (12)) satisfies this con-
dition. By contrast when Xinh (z) „ 0 then also (d3/e/
dz3) „ 0, and the stationary phase condition may exhibit
multiple roots. One of these will of course derive from
the undistorted zðtÞ ¼ L=2� L=T :

at solution for which /e

and Ga were originally designed; but eventually other posi-
tions may end up satisfying Eq. (42), putting an end to the
method’s ability to deliver undistorted images. Fig. 8 illus-
trates with a series of graphs, the appearance of this multi-
ple-roots phenomenon. Ways to deal with this problem
reside in either setting all conditions such that the unde-
sired stationary-phase voxels fall outside the FOV of the
object that has been excited, or alternatively so that they
only begin to appear at virtual times t > Ta. Multiple exper-
imental parameters (Ge, Ga, sp, and Ta) are available to
achieve these goals, as further illustrated in the following
Paragraph.

3.3. One-dimensional compensations: an analytical example

Before proceeding with an extension of the protocol just
presented to multidimensional cases, we deem it valuable to
illustrate the implementation of the various calculations in
the paragraphs above in an explicit derivation of the com-
pensating functions /RF (s) and Ga (t). Since, as mentioned
earlier, spatially-encoded voxels are free from distortions
upon being subject to linear field inhomogeneities, we shall
consider towards this end a quadratic inhomogeneity
6 Another interesting alternative, dealing with exploiting this paper’s
approach to retrieve undistorted spatial images for cases where the
gradient is actually smaller than the intrinsic inhomogeneities, will be
discussed elsewhere.
XinhðzÞ ¼ g0 þ g1zþ g2z2: ð43Þ
From the constant-voxel condition in Eq. (37) it follows
that

d3/eðzÞ
dz3

¼ �2g2

T a

L
: ð44Þ
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A

Fig. 9. Experimental illustration of different artifacts affecting the field-
compensating principles described in this work, collected under the
conditions depicted in Fig. 7 for the same 1D phantom. (A) Spatially-
encoded profile obtained upon employing a ‘‘correct’’ excitation gradient
(Ge = 5 G/cm) as well as the RF and acquisition gradient shapes arising
from the Xinh (z) profile. (B) Idem as (A) but upon choosing the opposite
excitation gradient (Ge = �5 G/cm) and then solving for the correct
compensating conditions. Notice the severe distortions arising due to the
presence of multiple voxels satisfying the stationary phase condition for
most of the acquisition time. (C) Profile resulting upon employing the
appropriate excitation/acquisition gradients and RF offset shaping, but
neglecting a suitable correction of the cB1 (s) RF amplitude.
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This condition can be integrated twice subject to the
boundary conditions in Eqs. (39) and (40) cast as

sðziÞ ¼ 0() d/e

dz

����
zi¼�L=2

¼ 0; sðzf Þ ¼ sp ()
d/e

dz

����
zf¼L=2

¼ cGe þ
dXinhðzÞ

dz

����
zf¼L=2

" #
sp

yielding an explicit form for the gradient to be applied over
the course of the acquisition:

cGaðtÞ ¼ �g1 �
cGeffsp

T a

� g2Lsp

T a

� 2L
T a

g2 � t; ð46Þ

where cGeff = cGe + g1. This solution clearly reverts to
the homogeneous demand Ga = �Gesp/Ta on making
Xinh (z) = 0, and entails otherwise a linear ‘‘increase’’ in
gradient strength with time in order to account for pro-
gressive effects of the quadratic inhomogeneity. An inter-
esting feature to remark regarding Eq. (46), is that in the
inhomogeneous case it leads to a second solution in
addition to zðtÞ ¼ L=2� L=T :

at. This is a second root of
the kind introduced earlier, which in this case will be
expressed by

zartifactðtÞ ¼
cGeffsp

g2T a

� L
2

1þ 2sp

T a

� �
� L

T a

� t: ð47Þ

Notice that just as the ‘‘legitimate’’ solution being sought,
this position is also decoded linearly with time. This in turn
enables one to avoid its interfering effects, by making sure
that the different parameters making up the constant term
of this position already place zartifact (t = 0) outside the ob-
ject’s FOV. Fig. 9 illustrates an example of this carried out,
in this instance by a judicious choice of the sign of the Ge

gradient chosen for the encoding. Alternative routes of
dealing with this kind of artifact are also conceivable.

The conclusion given earlier also indicated how double
integration of Eq. (44) bound to Eq. (45), enables one to
derive the tailored offset chirp to be applied for avoiding
the dephasing effects introduced by the inhomogeneity.
For the case of a quadratic Xinh (z) this can be carried
out analytically and, following some algebra, leads to

OðsÞ ¼ �go �
cGeff ½�2Lg2sþ spðcGeff þ Lg2Þ � D�

2g2T a

þ ½2Lg2s� spðcGeff þ Lg2Þ þ D�
4g2T 2

a

; ð48aÞ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcGeffsp � 2Lg2sþ Lg2spÞ2 þ g2T a½2LcGeffðsp � 2sÞ þ L2g2ð2sp þ T aÞ�

q
:

ð48bÞ

From here the tailored RF amplitude cB1 (s), proportional
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdOðsÞ=ds

p
j, can also be worked out. Fig. 9C illustrates

the relevance of suitably tailoring this nutation, with an im-
age decoded using all the right compensation parameters
except for such RF amplitude correction.
4. Compensating inhomogeneities in multiple dimensions

The compensation principles described in the previous
Section for the case of 1D acquisitions can be expanded
to multidimensional single-scan experiments. A main
demand of these nD procedures is that suitable encoding
and decoding sequences be devised, whereby each voxel r
is addressed independently and only once, both during the
initial excitation as well as during the latter acquisition
stages. A one-to-one relation during the encoding is
required in order to be able to compensate each Xinh (r) ele-
ment in the field distribution. The analogous decoding
demand derives from the fact that the protocol enables
the correct compensation of Xinh (r) solely for a single
acquisition time t, but not for multiple times. For instance
2D encoding schemes of the kind illustrated in Figs. 4C and
D will be unable to compensate generic Xinh (x,z) 2D distri-
butions, as they both address all elements positioned per-
pendicular to a particular x or z coordinate at once.
Neither will decoding schemes such as the ones in Figs.
4C and D succeed in compensating 1D distortions along
the x direction, as individually encoded coordinates along
this axis are interrogated multiple times during the acquisi-
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tion. In general, full compensation of an arbitrary inhomo-
geneity along n-dimensions will demand the use of an nD
spatial-encoding pulse, followed by a continuous n-dimen-
sional rasterization of the image. When viewed as a func-
tion of s and t both the nD encoding and decoding
processes regain in this fashion a one-dimensional charac-
ter, and the various equations and conditions derived ear-
lier can be re-applied.

The mathematics of a full 3D inhomogeneity compensa-
tion are quite involved, and their general treatment will be
deferred to a subsequent publication. Still, we would like to
exemplify some of the new issues that will arise even when
dealing with the simplest of nD compensation cases. One
feature that was absent in both the 1D inhomogeneous field
treatment as well as in the homogeneous nD one—but
which is a regular feature of all Xinh (r) nD compensation
schemes—concerns the fact that spins will no longer be
addressed along orthogonal directions. This will in turn
shift the initial coordinate of the rasterization from its ideal
position, and mix the constant-voxel and linear rasteriza-
tion demands among all n dimensions. This feature can
be appreciated by considering the nD stationary phase con-
dition Eq. (27a), which will now become

kðtÞ ¼ � rr½/eðrÞ� � t � rr XinhðrÞ½ �
¼ � rx½/eðrÞ� � JðrÞ � t � rr XinhðrÞ½ � ð49Þ

with

rx½/eðrÞ� ¼ ðo/e=oxx; o/e=oxyo/e=oxzÞ
and

J ¼
oxx=ox oxx=oy oxx=oz

oxy=ox oxy=oy oxy=oz

oxz=ox oxz=oy oxz=oz

0
B@

1
CA ð50Þ

the Jacobian matrix relating positions r and axes of fre-
quency encoding x. In the absence of inhomogeneities this
transformation would be diagonal, with each frequency-
swept encoding addressing its respective spatial direction.
Yet in the presence of an Xinh (r) term J will connect the
decoding along a given axis with encodings which hap-
pened along other, non-orthogonal directions. Also the
conditions that define the constant voxel size will now re-
quire that conditions along multiple orthogonal directions
be suitably related. Indeed for the inhomogeneous-field
case we shall demand, in analogy to Eq. (36), that

d

dt
½det Qr¼rðtÞ� ¼ 0 ð51Þ

where following Eq. (28) we define

Qij ¼ Dij /eðrÞ þ k:rþ tXinhðrÞ½ �
¼ o=oio=ojf/e½xðrÞ�g þ to=oio=oj½XinhðrÞ� ð52Þ

Once again the Jacobian relating the encoding frequencies
x and orthogonal directions r will intervene in this matrix
via the derivatives of /e [x(r)], making Q off-diagonal as
long as Xinh „ 0.
Rather than considering such full treatment we shall
focus here on the simpler case, of how to compensate a 2D
spatially-encoded experiment for a 1D inhomogeneity of
the type Xinh (z). Specifically we shall consider the 2D spin
encoding instance illustrated in Fig. 4C, which will lead to

/e ¼ /x
eðxxÞ/z

eðxzÞ ð53Þ
now defined as a function of the swept-the RF encoding
frequencies

xzðzÞ ¼ cGz
ezþ XinhðzÞ ð54Þ

and

xxðx; zÞ ¼ cGx
exþ XinhðzÞ: ð55Þ

Whereas the encoding will be imparted as a function of
these frequency variables x, the decoding process will still
be given by gradients acting along orthogonal directions r.
A decision is thus to be made in terms of choosing a set of
variables for describing the experiment: either for r or for
x. Going for the former implies rewriting the stationary
phase condition in Eq. (27) as

ðkx; kzÞ ¼ � ðo/x
e=oxx; o/z

e=oxz þ tdXinh=dzÞ:

�
cGx

e dXinh=dz

0 cGz
e þ dXinh=dz

� �
;

ð56Þ

where as adumbrated the Jacobian matrix is involved on
the right-hand side. On these k elements we shall once
again impose the conditions that force an idealized raster-
ization of the image, which for trajectories zigzagging
through the (x,z) plane can be cast analytically as

xðtÞ ¼ xi þ Lx=2 cos
2pN x

T a

ðt þ DÞ
� 	

; zðtÞ ¼ Lz=2� Lz=T :
at

ð57Þ
Nx being the number of zigzags chosen. The appearance
here of the new parameters xi, D reflect the fact that, even
if a p-driven encoding solely along the x̂ axis is employed,
the inhomogeneity will shift the rasterization away from
zero and begin it at xi ¼ � XinhðLz=2Þ

cGx
e

. As in the 1D case
Eq. (56) will have to be derivatized with respect to time
in order to extract the acquisition gradients Gx

aðtÞ and
Gz

aðtÞ. Given the one-to-one relation between t and z

(Eq. (57)) this is equivalent to taking a derivative with re-
spect to z. Notice that this one-to-one relation is an impor-
tant demand that could not have been fulfilled if
considering the orthogonal x axis (of which t in Eq. (57)
is not a single-valued function), thus giving mathematical
expression to the physical demands with which we began
this Section. Notice as well that since in the general case
Xinh, /x

eðxxÞ and /z
eðxzÞ will be high-dimensional polyno-

mials of x and z, we shall once again have to deal here with
the possibility of multiple root solutions of the kind intro-
duced in the previous Section.

Also as in the unidimensional case, the set of second-or-
der spatial derivatives of /e (x,z) that are needed for defin-
ing the acquisition gradients Gx

aðtÞ, Gz
aðtÞ can be retrieved



Fig. 10. Experimental demonstration of the field-compensating principles
described in this work, for the case of a two-dimensional acquisition on
the phantom sample introduced in Fig. 3. (A) Single-scan 2D FT EPI
image recorded using a blipped read-out of 32 echoes spread over 32 ms;
acquisition gradients were Gx

a ¼ �15 G=cm and Gz
a ¼ 0:85 G=cm (pulsed

over 50 ls every 950 ls). (B) Single-scan 2D spatially-encoded image
collected using a zigzagging scheme as in Fig. 6A except for
Gx

e ¼ Gz
e ¼ 4 G=cm; Gx

a ¼ �25 G=cm and Gz
a ¼ 0:5 G=cm. (C and D)

Idem as in (A and B) but upon subjecting the sample to the artificial
Xinh (z) illustrated in Fig. 11A. (E) Idem as in (D) but after inserting the
mapped inhomogeneity profile into the algorithm described in the text,
calculating from it the correcting RF sweep and acquisition gradient
patterns, and applying it for the acquisition of the data. Fig. 11 depicts the
main parameters involved in this correction, as well as a comparison
between the raw data sets arising with and without such compensation.
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from the constant voxel condition. According to Eqs. (51)
and (52) this will now require finding the determinant of
the matrix

Q ¼
cGx

e


 �2 o2/x
e

ox2 cGx
e

dXinh

dz
d2/x

e

dx2
x

cGx
e

dXinh

dz
d2/x

e

dx2
x

cGz
e


 �2 d2/z
e

dz2 þ 2cGz
e

dXinh

dz
d2/z

e

dx2
z
þr2/e

dXinh

dz


 �
þ rx/e � 1þ tð Þ d2Xinh

dz2

0
@

1
A;
ð58Þ

then setting its time- (i.e., its z-) derivative to zero, and
looking for the appropriate /x

e, /z
e solutions. It can be

shown that for the present case this becomes equivalent
to demanding

d

dt
d2/x

e

dx2
x

� �
d2/z

e

dz2
þ t þ d/x

e

dxx

� �
d2Xinh

dz2

� 	� �
¼ 0: ð59Þ

Notice that the bracketed term in this derivative is akin to a
product among the second-derivatives defining the Dx and
Dz spatial resolutions, distorted as they now are by the ef-
fects of the inhomogeneity. A simple way to solve for the
multiple mixed derivatives posed by this equation is to car-
ry out the xx–encoding by means of a linear frequency
sweep—for instance via an adiabatic p sweep leading to
/x

eðxxÞ ¼ cxx2
x—and port all the necessary corrections to

a tailored encoding solely along the z axis. This shifts all
the focus onto the Dz�1 � bd

2/z
e

dz2 þ ðt þ d/x
e

dxx
Þ d2Xinh

dz2 c term of
Eq. (59); setting this to zero we can derive the requirement

d3/z
e

dz3
¼ � d

dz
d2Xinh

dz2
tðzÞ þ 2cxcGx

e � x½tðzÞ�
� �

þ 2cxXinhðzÞ
� �

:

ð60Þ
This is the 2D analog to Eq. (37) and can likewise be inte-
grated to obtain d2/z

e

dz2 based on the boundary conditions
applying to the relations given in Eq. (57) for x (t) and
z (t); from here the remainder of the reconstruction proce-
dure can be continued backwards, along lines similar to
those detailed for the unidimensional case.

Based on the resulting relations a software package
capable of providing the encoding RF profile /RF [s (z)]
and decoding gradient Gz

aðtÞ needed for correcting an
Xinh (z) inhomogeneity affecting a p/2(z) �p (x) encoding
experiment was written; as mentioned, even in such 2D
scenario all Ge gradients as well as the x-related functions
/RF [s (x)] and Gx

aðtÞ could be left out of the correcting
task. Experiments were then carried out based on the zig-
zagging rasterization in Eq. (57), for the sake of testing
the capabilities of the ensuing compensation. Fig. 10 illus-
trates a set of representative results obtained in this fash-
ion. Illustrated in panels A and B are single-scan 2D
MRI profiles obtained on a 5 mm water phantom in
the absence of inhomogeneities utilizing EPI and spa-
tial-encoding approaches; both images are comparable,
even if the former is of a slightly higher definition. Shown
in Figs. 10C and D is an analogous comparison but upon
subjecting the sample to a ca. 2.5 kHz inhomogeneity
artificially induced by de-shimming the sample along the
z axis; both images are severely distorted, as expected,
along this weak-gradient read-out direction. Fig. 10E
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illustrates the recovery potential of the spatial encoding
approach upon applying the compensation just described;
as can be appreciated, the quality of the resulting 2D
image is not significantly different from that of its homo-
geneous-field analog in panel B. A few additional com-
parisons between un-corrected and corrected features
worth remarking in this 2D procedure, are illustrated in
Fig. 11.
5. Conclusions

By treating the sample in a non-uniform fashion, the spa-
tial encoding protocol enables the acquisition of nD MR
images within a single scan, while at the same time opening
up various possibilities to deal with field inhomogeneities.
The present study focused on compensating artifacts that
arise from a B0 field distribution; we shall discuss elsewhere
additional opportunities that arise in terms of compensating
B1-related inhomogeneities, for dealing with the presence of
multiple chemical sites, as well as for removing artifacts that
arise from the combined action of all of these factors. As for
the specific B0 compensation procedures described in this
work, we believe that while many of their principles will
remain valid, their implementation could be improved over
the particular set of choices made in the experiments and
calculations hereby presented. In particular it is not clear
that the ways we have employed swept RF pulses represent
the best necessary route to achieve the desired /RF (r) pro-
files, or that our choice to reintroduce the image ideality
while keeping the encoding gradients and the acquisition
dwell time constant is optimal. We are still in the process
of exploring these various options, and of assessing their
relative merits and performance.

Although significantly simpler and less general than its
higher-dimensional counterpart, the one-dimensional B0

compensation scheme hereby introduced could proof practi-
cal in a number of instances where field inhomogeneities are
primarily relevant along one of the spatial directions, and
where single-scan acquisitions are deemed necessary. These
may include the read-out direction of a 2D EPI scan, or ex-
situ single-sided imaging setups. In such cases the execution
of a hybrid spatial-encoding/Fourier scheme of the type
illustrated in Fig. 4B, where the small bandwidth axis would
undergo a ‘‘blipped’’ incrementation and concomitant Xinh
Fig. 11. (B–D) Comparison between various parameters involved in the
acquisition of the inhomogeneity-compensated image shown in Fig. 10E
(red, full lines), and the ones that would have been used for an equivalent
acquisition in the absence of inhomogeneities (black, dashed). The actual
experiment involved a 2D spatially-encoded sequence utilizing a zigzag
decoding (Fig. 4C) with N2 = 8, and assumed FOVs = 23 mm (z) · 6 mm
(x). Both encoding gradients were set at 4 G/cm and encoding times at
4 ms; the field inhomogeneity shown in (A) was mapped and assumed in
the compensation calculations. (E) shows a comparison between the time-
domain data arising in the presence of the inhomogeneity if the
compensation procedure is (red lower trace) or is not (black upper trace)
used. Notice here the ability of the compensation to ‘‘revive’’ the signal,
extending it far beyond its effective T 	2.

b
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field compensation while FIDs are actually digitized while
under the action of a strong orthogonal k-space encoding,
could offer several of the advantages while avoiding the com-
parative disadvantages of spatially-encoded MRI. Further-
more, the spatially selective nature of this procedure also
makes it particularly well suited to spatially discriminating
detection setups, such as those arising in parallel imaging
[32,33]. Combining the scheme hereby discussed with other
EPI-derived inhomogeneity compensation procedures
[34,35] is also an avenue worth pursuing. Further tests of
these various options are currently in progress.
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