\MRI Primer, Exercise \#7
 Solution

Question 1

The signal at the echo time, as derived in class $\&$ in the notes, is given by

$$
\mathrm{M}_{\mathrm{xy}}(\mathrm{r})=\left[1-\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}(\mathrm{r})}\right] \mathrm{e}^{-\mathrm{TE} / \mathrm{T}_{2}(\mathrm{r})} \mathrm{M}_{0}(\mathrm{r})
$$

The difference in this intensity between two types of tissue, differing only in their T_{1}, is given by

$$
\begin{aligned}
\mathrm{M}_{\mathrm{xy}}^{(2)}(\mathrm{r})-\mathrm{M}_{\mathrm{xy}}^{(1)}(\mathrm{r}) & =\left[\left(1-\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}^{(2)}(\mathrm{r})}\right)-\left(1-\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}^{(1)}(\mathrm{r})}\right)\right] \mathrm{e}^{-\mathrm{TE} / \mathrm{T}_{2}(\mathrm{r})} \mathrm{M}_{0}(\mathrm{r}) \\
& =\left(\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}^{(1)}(\mathbf{r})}-\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}^{(2)}(\mathbf{r})}\right) \mathrm{e}^{-\mathrm{TE} / \mathrm{T}_{2}(\mathrm{r})} \mathrm{M}_{0}(\mathrm{r})
\end{aligned}
$$

To maximize this, we need to find

$$
\frac{\mathrm{d}\left(\mathrm{M}_{\mathrm{xy}}^{(2)}(\mathrm{r})-\mathrm{M}_{\mathrm{xy}}^{(1)}(\mathrm{r})\right)}{\mathrm{d}(\mathrm{TR})}=0
$$

We've actually solved this equation in the lecture notes for the $T_{2}{ }^{*}$ case in GRE experiments. The solution is:

$$
\mathrm{TR}_{\text {maximal contrast }}=\frac{\mathrm{T}_{1}^{(1)} \mathrm{T}_{1}^{(2)}}{\left(\mathrm{T}_{1}^{(1)}-\mathrm{T}_{1}^{(2)}\right)} \ln \left(\frac{\mathrm{T}_{1}^{(1)}}{\mathrm{T}_{1}^{(2)}}\right) \approx \frac{\left|\mathrm{T}_{1}^{(2)}+\mathrm{T}_{1}^{(2)}\right|}{2}
$$

Question 2

The signal at echo time is

$$
M_{x y}(r)=\frac{\left[1-\mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}(\mathrm{r})}\right] \sin (\alpha)}{1-\cos (\alpha) \mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}(\mathrm{r})}} \mathrm{e}^{-\mathrm{TE} / \mathrm{T}_{2}{ }^{*}(\mathrm{r})} \mathrm{M}_{0}(\mathrm{r})
$$

To maximize it with respect to α, we need to find α for which

$$
\frac{\mathrm{dM}_{\mathrm{xy}}}{\mathrm{~d} \alpha}=0
$$

Differentiating (this is a bit cumbersome), we obtain

$$
\frac{\left(1-\mathrm{E}_{1}\right) \cos (\alpha)}{1-\mathrm{E}_{1} \cos (\alpha)}-\frac{\left(1-\mathrm{E}_{1}\right) \mathrm{E}_{1} \sin ^{2}(\alpha)}{\left(1-\mathrm{E}_{1} \cos (\alpha)\right)^{2}}=0, \quad \mathrm{E}_{1} \equiv \mathrm{e}^{-\mathrm{TR} / \mathrm{T}_{1}}
$$

where I've denoted $E_{1}=e^{-T R / T 1}$. Simplifying, we obtain

$$
\cos (\alpha)=\frac{\mathrm{E}_{1} \sin ^{2}(\alpha)}{1-\mathrm{E}_{1} \cos (\alpha)}
$$

Simplifying some more, and using $\cos ^{2}+\sin ^{2}=1$, we get the desired result

$$
\cos (\alpha)=\mathrm{E}_{1} .
$$

So, why isn't the Ernst angle used in MRI? Because, once a sufficient signal magnitude has been attained and you can see what you're after, increasing it further serves no purpose. Your goal in MRI is often maximal contrast, not maximal signal!

Question 3.

The magnetization is

$$
M_{x y}(z, t)=M_{0} e^{-i \gamma G z t} \quad \text { for }-L / 2 \leq z \leq L / 2
$$

The signal is then

$$
s(\mathrm{t}) \propto \int_{-\mathrm{L} / 2}^{\mathrm{L} / 2} \mathrm{M}_{\mathrm{xy}}(\mathrm{z}, \mathrm{t}) \mathrm{dz}=\mathrm{M}_{0} \int_{-\mathrm{L} / 2}^{\mathrm{L} / 2} \mathrm{e}^{-\mathrm{i} \gamma \mathrm{Gzt}} \mathrm{dz}=\mathrm{M}_{0} \frac{\mathrm{e}^{\mathrm{i} \gamma \mathrm{GLt} / 2}-\mathrm{e}^{-\mathrm{i} \gamma \mathrm{GLt} / 2}}{\mathrm{i} \gamma \mathrm{Gt}}=\frac{\mathrm{LM}_{0}}{2} \operatorname{sinc}\left[\frac{\gamma \mathrm{GLt}}{2}\right]
$$

where I've used $\sin (\mathrm{x})=\left(\mathrm{e}^{\mathrm{ix}}-\mathrm{e}^{-\mathrm{ix}}\right) / 2 \mathrm{i}$. So, the signal decays as follows:

The first 0 of a sinc function is encountered when

$$
\sin c(x)=0 \quad \text { when } \quad \sin (x)=0 \quad \text { when } \quad x=\pi / 2
$$

In our case, $\mathrm{x}=\gamma \mathrm{GLt} / 2$, so the signal becomes 0 (for the first time) when

$$
\frac{\gamma \mathrm{GLt}}{2}=\pi / 2 \quad \Rightarrow \quad \mathrm{t}=\frac{\pi}{\gamma \mathrm{GL}}
$$

For a 30 cm sample, with $G=40 \mathrm{mT} / \mathrm{m}$, one has

$$
\mathrm{t} \approx \frac{1}{2 \times 42 \times 10^{6} \times 40 \times 10^{-3} \times 0.3} \approx 1 \text { microsecond }
$$

