MRI Primer, Exercise \#6: Solution

Question 1

Denote by $S R$ the slew-rate. Remember that $\Delta \mathrm{k}$ is merely the area under the gradient. In our case, the gradient is triangular, so the area under it is simply the area under a triangle: $0.5 \times$ base \times height. The "base" here is $\Delta \mathrm{t}$. The height is the value of the gradient midway through the pulse. Because the gradient is linearly increasing, this value $=S R \times\left(\Delta t_{y} / 2\right)$. Combining it all together (don't forget γ !) yield:

$$
\Delta \mathrm{k}=\gamma \times 0.5 \times \Delta \mathrm{t}_{\mathrm{y}} \times\left(\mathrm{SR} \times \Delta \mathrm{t}_{y} / 2\right)=0.25 \times \mathrm{SR} \times \Delta \mathrm{t}_{y}^{2}
$$

It is given that your field of view along the y-axis is $\mathrm{FOV}_{\mathrm{y}}=30 \mathrm{~cm}=0.3 \mathrm{~m}$. Hence, according to the resolution constraints, $\Delta \mathrm{k}_{\mathrm{y}}=\mathrm{FOV}_{\mathrm{y}}{ }^{-1}=3.33 \mathrm{~m}^{-1}$. Using the results of the previous question, $\Delta \mathrm{k}_{\mathrm{y}}=\frac{\gamma}{4}$ SR $\Delta \mathrm{t}_{\mathrm{y}}^{2}$, we obtain (for $\mathrm{SR}=200 \mathrm{Tesla} / \mathrm{meter} /$ seconds) $: \Delta \mathrm{t}_{\mathrm{y}} \approx 40 \mu \mathrm{sec}$.

The average gradient is given by averaging over the gradient waveform:

$$
\langle\mathrm{G}(\mathrm{t})\rangle=\frac{1}{\Delta \mathrm{t}_{\mathrm{y}}} \int_{0}^{\Delta \mathrm{t}_{\mathrm{y}}} \mathrm{G}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}=\frac{1}{\gamma \Delta \mathrm{t}_{\mathrm{y}}} \times \gamma \int_{0}^{\Delta \mathrm{t}_{\mathrm{y}}} \mathrm{G}\left(\mathrm{t}^{\prime}\right) \mathrm{dt} \mathrm{t}^{\prime}=\frac{\Delta \mathrm{k}}{\gamma \Delta \mathrm{t}_{\mathrm{y}}}=\frac{\mathrm{SR} \Delta \mathrm{t}_{\mathrm{y}}}{4} \approx 2 \frac{\text { milliTesla }}{\text { meter }}
$$

Question 2

Let's write down what we have:

$$
\begin{aligned}
& \Delta \mathrm{k}_{\mathrm{x}}=\Delta \mathrm{k}_{\mathrm{y}}=\frac{1}{0.3 \mathrm{~m}}, \\
& \mathrm{~N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=\text { number of voxels, } \\
& \mathrm{T}_{\mathrm{x}}=0.5 \mathrm{~ms} \\
& \Delta \mathrm{t}_{\mathrm{y}}=0.1 \mathrm{~ms} \\
& \mathrm{~T}_{\text {tooal }}=\mathrm{T}_{2}=50 \mathrm{~ms}
\end{aligned}
$$

Computing N is straightforward now, since we know that $N_{y} \times\left(T_{x}+\Delta t_{y}\right)=T_{\text {toral }}$, from which

$$
\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}} \approx 83
$$

The $\mathrm{x} \& \mathrm{y}$ gradients are found using $\Delta \mathrm{k}_{\mathrm{x}}=\gamma \mathrm{G}_{\mathrm{x}} \Delta \mathrm{t}_{\mathrm{x}}, \Delta \mathrm{k}_{\mathrm{y}}=\gamma \mathrm{G}_{\mathrm{y}} \Delta \mathrm{t}_{\mathrm{y}}$, from which:

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{x}}=\frac{\Delta \mathrm{k}_{\mathrm{x}}}{\gamma \Delta \mathrm{t}_{\mathrm{x}}}=\frac{\Delta \mathrm{k}_{\mathrm{x}}}{\gamma\left(\mathrm{~T}_{\mathrm{x}} / \mathrm{N}_{\mathrm{x}}\right)}=\frac{3.33 \mathrm{~m}^{-1}}{\left(42 \times 10^{6} \frac{\mathrm{~Hz}}{\text { Tesla }}\right) \times(0.5 \mathrm{~ms} / 83)} \approx 13 \frac{\text { milliTesla }}{\text { meter }} \\
& \mathrm{G}_{\mathrm{y}}=\frac{\Delta \mathrm{k}_{\mathrm{y}}}{\gamma \Delta \mathrm{t}_{\mathrm{y}}}=\frac{\Delta \mathrm{k}_{\mathrm{x}}}{\gamma \Delta \mathrm{t}_{\mathrm{y}}}=\left(\frac{\Delta \mathrm{t}_{\mathrm{x}}}{\Delta \mathrm{t}_{\mathrm{y}}}\right) \mathrm{G}_{\mathrm{x}}=\left(\frac{\mathrm{T}_{\mathrm{x}}}{\mathrm{~N} \Delta \mathrm{t}_{\mathrm{y}}}\right) \mathrm{G}_{\mathrm{x}}=\left(\frac{5}{83}\right) \mathrm{G}_{\mathrm{x}}=\frac{\mathrm{G}_{\mathrm{x}}}{16.6} \approx 0.78 \frac{\text { milliTesla }}{\text { meter }}
\end{aligned}
$$

Question 3

This is an "answer by drawing" sort of question, so let's draw!

The π pulse in (c.) has no effect because the axis of rotation and the spin's direction are colinear. To appreciate the composite pulse's action, I'm going to enlarge the drawing and exaggerate the angles somewhat:

(d.) Note how the middle pulse, which is almost a π pulse, compensates for the missing angle.

