MRI Primer

Exercise \#5: Solution

Question 1.

Thinking in terms of a trajectory in k-space (see figure on right), we must have $\Delta \mathrm{k}_{\mathrm{x}}=\Delta \mathrm{k}_{\mathrm{y}}=1 / \mathrm{FOV}_{\mathrm{x}}=1 / \mathrm{FOV}_{\mathrm{y}}=1 / \mathrm{L}$. Now,

$$
\begin{aligned}
& \Delta k_{x}=\gamma G_{x} \times(\text { dwell time })=\gamma G_{x} \times \frac{T_{x}}{N} \\
& \Delta k_{y}=\gamma G_{y} \Delta t_{y}
\end{aligned}
$$

where the dwell time - the time between each point sampled - is given by T_{x} (the time it takes to sample a line) divided by N (the number of points in a line).

N points. It takes T_{x} seconds to cover this line. Since, by choice, $\Delta \mathrm{k}_{\mathrm{x}}=\Delta \mathrm{k}_{\mathrm{y}}$, one obtains

$$
\Delta k_{x}=\gamma G_{x} T_{x} / N=\gamma G_{y} \Delta t_{y}=\Delta k_{y}
$$

and since, by assumption, $T_{x} / N=\Delta t_{y}$, the desired result $\left(G_{x}=G_{y}\right)$ is obtained.

Question 2.

Think of what it means to acquire a 1D image of an object containing water, having some offset, $\Delta \omega$. Let's take the water profile in the question for concreteness:

In the absence of a gradient, all water spins have the same frequency, $\Delta \omega$. Acquiring (without a gradient) and Fourier-transforming would yield a peak at $\Delta \omega$:

$\Delta \omega$

When you switch on a gradient, spins get a frequency assigned to them as a function of position: $\omega=\gamma \mathrm{Gz}+\Delta \omega$. Acquiring in the presence of this gradient means you will get a peak from each position in the sample, which will give you the 1D profile of your object; the peak at ω will come from the spins at $z=\frac{\omega-\Delta \omega}{\gamma G}$:

How would you translate this frequency axis to a position axis? By inverting the relation $\omega=\gamma G z+\Delta \omega$ to yield $z(\omega)=\frac{\omega-\Delta \omega}{\gamma G}$. If you know $\Delta \omega$ (you do) and G, you can recover z.

For a sample with both fat and water, with $\Delta \omega=0$ for the water and $\Delta \omega \neq 0$ for the fat (by assumption), one would get the following result (in frequency space) after Fourier transforming the signal:

You can see there's a $\Delta \omega$ gap in frequency space between the two profiles. When converting frequency to position, however, you have a problem. You don't know a-priori which peak comes from fat and which from water (here I've drawn the object so we do know a-priori which peak comes from fat and which peak comes from water, but when imaging unknown objects it's impossible to say). Therefore, we don't know $\Delta \omega$. We must assume $\Delta \omega=0$ (out of ignorance), so

$$
\omega=\gamma G z \quad \Leftrightarrow \quad z=\frac{\omega}{\gamma G}
$$

Using this to "translate" between frequency \& position, we obtain

So the shift, when expressed in terms of position, becomes

$$
\Delta z=\frac{\Delta \omega}{\gamma G}
$$

which is the magnitude of the shift between the fat and the water. The obvious way to reduce this artifact is to increase the gradient, G (making $\Delta \mathrm{z}$ smaller).

There is also a formal, mathematical solution to the problem. Let $\mathrm{M}_{0}(\mathrm{z})$ be the distribution of water or fat in the imaged object, with some chemical shift $\Delta \omega$. After exciting the spins, we have

$$
M_{x y}(z)=M_{0}(z)
$$

We apply a gradient -G for a time $\mathrm{T} / 2$, during which $\omega(\mathrm{z})=\Delta \omega-\gamma \mathrm{Gz}$, and after which

$$
M_{x y}(z)=M_{0}(z) e^{-i \omega(z) T / 2}=M_{0}(z) e^{-i \Delta \omega T / 2} e^{i \gamma G z T / 2}
$$

Next, we acquire in the presence of a gradient. During that time (starting at $t=0$),

$$
\mathrm{M}_{x y}(\mathrm{z}, \mathrm{t})=\mathrm{M}_{0}(\mathrm{z}) \mathrm{e}^{-\mathrm{i} \Delta \omega(\mathrm{~T} / 2+\mathrm{t})} \mathrm{e}^{\mathrm{i} \gamma \mathrm{Gz}(\mathrm{~T} / 2-\mathrm{t})}
$$

and hence, the acquired signal, as a function of time, will be:

$$
s(t) \propto \int_{\text {sample }} M_{x y}(z, t) d z=e^{-i \Delta \omega(t+T / 2)} \int_{\text {sample }} M_{0}(z) e^{-i \gamma G z(t-T / 2)} d z
$$

We change variables by substituting $\mathrm{k}(\mathrm{t})=\gamma \mathrm{G}(\mathrm{t}-\mathrm{T} / 2)$, so

$$
\left.s(\mathrm{k})=s(\mathrm{t}(\mathrm{k})) \propto \mathrm{e}^{-\mathrm{i}\left(\frac{\Delta \omega \mathrm{k}}{\gamma \mathrm{G}}+\Delta \omega \mathrm{T}\right.}\right) \int_{\text {sample }} \mathrm{M}_{0}(\mathrm{z}) \mathrm{e}^{-\mathrm{i} \mathrm{ik}(\mathrm{t})} \mathrm{d} \mathrm{z}, \quad-\frac{\gamma \mathrm{GT}}{2} \leq \mathrm{k} \leq+\frac{\gamma \mathrm{GT}}{2}
$$

This can be written as:

$$
s(\Delta \omega, \mathrm{k})=\mathrm{e}^{-\mathrm{i} \frac{\Delta \omega \mathrm{k}}{\gamma \mathrm{G}}} \mathrm{e}^{-\mathrm{i} \Delta \omega \mathrm{~T}} \mathrm{~s}(\Delta \omega=0, \mathrm{k})
$$

So it's the same signal as we would've gotten from the $\Delta \omega=0$ case, with (i.) a constant phase (the $\mathrm{e}^{-i \Delta \omega \mathrm{~T}}$) and a linear phase ($\mathrm{e}^{-\mathrm{i} \Delta \omega_{k} / \gamma_{G}}$) multiplying it. The original image is recovered by inverse-Fourier-transforming over the k coordinate:

$$
\begin{aligned}
\mathrm{M}_{0}^{(\text {reconstructed })}(\Delta \omega, \mathrm{z}) & =\int s(\Delta \omega, \mathrm{k}) \mathrm{e}^{\mathrm{i} k z} \mathrm{dk} \\
& =\mathrm{e}^{-\mathrm{i} \Delta \omega \mathrm{~T}} \int \mathrm{e}^{-\mathrm{i} \Delta \omega \mathrm{k} / \gamma \mathrm{G}} \mathrm{~s}(\Delta \omega=0, \mathrm{k}) \mathrm{e}^{\mathrm{ikz}} \mathrm{dk} \\
& =\mathrm{e}^{-\mathrm{i} \Delta \omega \mathrm{~T}} \int \mathrm{~s}(\Delta \omega=0, \mathrm{k}) \mathrm{e}^{\mathrm{ik}\left[\mathrm{z}-\frac{\Delta \omega}{\gamma \mathrm{G}}\right]} \mathrm{dk} \\
& =\mathrm{e}^{-\mathrm{i} \Delta \omega \mathrm{~T}} \mathrm{M}_{0}\left(\mathrm{z}-\frac{\Delta \omega}{\gamma \mathrm{G}}\right)
\end{aligned}
$$

since $M_{0}(\mathrm{z})=\int s(\Delta \omega=0, \mathrm{k}) \mathrm{e}^{\mathrm{ikz}} \mathrm{dk}$. So you get (i.) a position shift, and (ii.) a phase shift as well (a complex number of magnitude $1, \mathrm{e}^{-\mathrm{i}^{\Delta \omega \mathrm{T}}}$, multiplying every voxel in the image).

Question 3

Increase ...	FOV	N	$\Delta \mathrm{z}$	Notes
G	-	0	-	$\Delta \mathrm{k}, \quad \mathrm{k}_{\max \quad \text { increase (while }}$ $\Delta \mathrm{z}$ decrease.
T (keeping N fixed)	-	0	-	$\mathrm{k}_{\max }$ increases, $\Delta \mathrm{k}$ increases.
N (keeping T fixed)	+	+	0	$\mathrm{k}_{\max }$ stays the same, $\Delta \mathrm{k}$ decreases.
$\Delta \mathrm{t}$ (keeping N fixed)	-	0	-	N is fixed, so an increase in $\Delta \mathrm{t}$ implies an increase in T as well. Thus, $\mathrm{k}_{\max }$ and $\Delta \mathrm{k}$ increase.

+ means it increases, 0 means no change, - means a decrease.

