MRI Primer Exercise #5: Solution

Question 1.

Thinking in terms of a trajectory in k-space (see figure on right), we must have $\Delta k_x = \Delta k_y = 1/FOV_x = 1/FOV_y = 1/L$. Now,

$$\Delta k_x = \gamma G_x \times (\text{dwell time}) = \gamma G_x \times \frac{T_x}{N}$$
$$\Delta k_y = \gamma G_y \Delta t_y$$

where the dwell time – the time between each point sampled – is given by T_x (the time it takes to sample a line) divided by N (the number of points in a line). Since, by choice, $\Delta k_x = \Delta k_y$, one obtains

$$\Delta k_{x} = \gamma G_{x} T_{x} / N = \gamma G_{y} \Delta t_{y} = \Delta k_{y}$$

N points. It takes T_x seconds to cover this line.

and since, by assumption, $T_x/N=\Delta t_y$, the desired result ($G_x=G_y$) is obtained.

Question 2.

Think of what it means to acquire a 1D image of an object containing water, having some offset, $\Delta \omega$. Let's take the water profile in the question for concreteness:

In the absence of a gradient, all water spins have the same frequency, $\Delta \omega$. Acquiring (without a gradient) and Fourier-transforming would yield a peak at $\Delta \omega$:

When you switch on a gradient, spins get a frequency assigned to them as a function of position: $\omega = \gamma Gz + \Delta \omega$. Acquiring in the presence of this gradient means you will get a peak from each position in the sample, which will give you the 1D profile of your object; the peak at ω will come

from the spins at $z = \frac{\omega - \Delta \omega}{\gamma G}$: WATER $\omega = \Delta \omega$ $\omega = \Delta \omega + \gamma GL$

How would you translate this frequency axis to a position axis? By inverting the relation $\omega = \gamma G z + \Delta \omega$ to yield $z(\omega) = \frac{\omega - \Delta \omega}{\gamma G}$. If you know $\Delta \omega$ (you do) and G, you can recover z.

For a sample with both fat and water, with $\Delta \omega=0$ for the water and $\Delta \omega\neq 0$ for the fat (by assumption), one would get the following result (in frequency space) after Fourier transforming the signal:

You can see there's a $\Delta \omega$ gap in frequency space between the two profiles. When converting frequency to position, however, you have a problem. You don't know a-priori which peak comes from fat and which from water (here I've drawn the object so we do know a-priori which peak comes from fat and which peak comes from water, but when imaging unknown objects it's impossible to say). Therefore, we don't know $\Delta \omega$. We must assume $\Delta \omega=0$ (out of ignorance), so

$$\omega = \gamma G z \qquad \Leftrightarrow \qquad z = \frac{\omega}{\gamma G}$$

Using this to "translate" between frequency & position, we obtain

So the shift, when expressed in terms of position, becomes

$$\Delta z = \frac{\Delta \omega}{\gamma G}$$

which is the magnitude of the shift between the fat and the water. The obvious way to reduce this artifact is to increase the gradient, G (making Δz smaller).

There is also a formal, mathematical solution to the problem. Let $M_0(z)$ be the distribution of water or fat in the imaged object, with some chemical shift $\Delta \omega$. After exciting the spins, we have

$$M_{xy}(z) = M_0(z)$$

We apply a gradient -G for a time T/2, during which $\omega(z) = \Delta \omega - \gamma G z$, and after which

$$M_{xy}(z) = M_0(z)e^{-i\omega(z)T/2} = M_0(z)e^{-i\Delta\omega T/2}e^{i\gamma GzT/2}$$

Next, we acquire in the presence of a gradient. During that time (starting at t=0),

$$M_{xy}\left(z,t\right) \!=\! M_0\!\left(z\right) e^{-i\Delta \omega \left(T/2+t\right)} e^{i\gamma G z \left(T/2-t\right)}$$

and hence, the acquired signal, as a function of time, will be:

$$s(t) \propto \int_{sample} M_{xy}(z,t) dz = e^{-i\Delta \omega (t+T/2)} \int_{sample} M_0(z) e^{-i\gamma Gz(t-T/2)} dz$$

We change variables by substituting $k(t) = \gamma G(t-T/2)$, so

$$s(k) = s(t(k)) \propto e^{-i\left(\frac{\Delta\omega k}{\gamma G} + \Delta\omega T\right)} \int_{sample} M_0(z) e^{-izk(t)} dz, \quad -\frac{\gamma GT}{2} \le k \le +\frac{\gamma GT}{2}$$

This can be written as:

$$s(\Delta\omega,k) = e^{-i\frac{\Delta\omega k}{\gamma G}}e^{-i\Delta\omega T}s(\Delta\omega=0,k)$$

So it's the same signal as we would've gotten from the $\Delta \omega = 0$ case, with (i.) a constant phase (the $e^{-i\Delta\omega_T}$) and a linear phase ($e^{-i\Delta\omega_k/\gamma_G}$) multiplying it. The original image is recovered by inverse-Fourier-transforming over the k coordinate:

$$\begin{split} \mathbf{M}_{0}^{(\text{reconstructed})}(\Delta \boldsymbol{\omega},\mathbf{z}) &= \int \mathbf{s}(\Delta \boldsymbol{\omega},\mathbf{k}) \mathbf{e}^{i\mathbf{k}\mathbf{z}} d\mathbf{k} \\ &= \mathbf{e}^{-i\Delta \boldsymbol{\omega}\mathbf{T}} \int \mathbf{e}^{-i\Delta \boldsymbol{\omega}\mathbf{k}/\gamma \mathbf{G}} \mathbf{s}(\Delta \boldsymbol{\omega} = 0,\mathbf{k}) \mathbf{e}^{i\mathbf{k}\mathbf{z}} d\mathbf{k} \\ &= \mathbf{e}^{-i\Delta \boldsymbol{\omega}\mathbf{T}} \int \mathbf{s}(\Delta \boldsymbol{\omega} = 0,\mathbf{k}) \mathbf{e}^{i\mathbf{k}\left[\mathbf{z} - \frac{\Delta \boldsymbol{\omega}}{\gamma \mathbf{G}}\right]} d\mathbf{k} \\ &= \mathbf{e}^{-i\Delta \boldsymbol{\omega}\mathbf{T}} \mathbf{M}_{0} \left(\mathbf{z} - \frac{\Delta \boldsymbol{\omega}}{\gamma \mathbf{G}}\right) \end{split}$$

since $M_0(z) = \int s(\Delta \omega = 0, k) e^{ikz} dk$. So you get (i.) a position shift, and (ii.) a phase shift as well (a complex number of magnitude 1, $e^{-i\Delta \omega_T}$, multiplying every voxel in the image).

Question 3				
Increase	FOV	Ν	Δz	Notes
G	-	0	-	Δk , k_{max} increase (while
				$k_{max}/\Delta k=N=const$). Hence FOV &
				∆z decrease.
T (keeping N fixed)	-	0	-	k_{max} increases, Δk increases.
N (keeping T fixed)	+	+	0	k_{max} stays the same, Δk decreases.
Δt (keeping N fixed)	-	0	-	N is fixed, so an increase in Δt
				implies an increase in T as well.
				Thus, k_{max} and Δk increase.

+ means it increases, 0 means no change, - means a decrease.