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1. Slice Selection 

 
1.1 2D vs. 3D 

 
Imaging sequences can be divided into two 
categories: those that excite all the spins in the 
body and obtain a 3D image simultaneously, 
and those that excite the spins slice-by-slice 
and obtain sets of 2D images. Both 
approaches yield in the end a 3D image. 
There are a couple of reasons for favoring a set 
of slice-by-slice 2D images over a full 3D 
acquisition. For example (assuming the slice is 
selected along the z-axis), to avoid aliasing 
along the z-axis in a full 3D acquisition, one 
must set Δkz<1/FOVz. This means acquiring 
lots of points in k-space, often more than you 
need. By exciting just the slices you want you 
can avoid this problem. 
 
1.2 Terminology 

 
One can excite axial/transverse (perpendicular 
to the field), sagittal (parallel to field, from 
front to back) and coronal (parallel to field, 
from right to left) slices in the human body: 
 

 
 
 
 

 
 
 
 
 
 

 
 
 

2. Selective Pulses 

 
To excite a slice selectively, all that is needed 
is a prolonged RF irradiation of the right 
amplitude. We’ll talk about things in 1D (the 
z-axis); the concepts introduced can then be 
readily generalized to 2D and 3D.  
 Assume a 1D sample as shown below, and 
assume there’s some gradient G acting in the 
background. The offset will be ω(z)=γGz. It 
will be 0 in the middle (point A), slightly 
larger above (point B), and much larger at 
point C: 
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Assume the spins all start out from thermal 
equilibrium along the z-axis. How would the 
effective field look like at zA, zB and zC?  
 
 
 
 
 
 
 
  z=zA   z=zB        z=zC 
 
At zA there is no offset, so the effective field is 
comprised only out of the RF, which (for the 
sake of concreteness) is taken to be along the 
x-axis. At zB, near zA, the offset is small 
compared to the RF (that is, we assume 
γGzB<<γBRF), so the field is approximately 
along the x-axis. Far away from the center, 
where γGzC>>γBRF, the offset is much larger 
than the RF and the effective field is, to a 
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good approximation, parallel to the z-axis. 
Therefore, to a good approximation, the spins 
around the center (around zA=0) will get tilted 
onto the y-axis (provided we calibrate our 
pulse’s duration, T, such that γBRFT=π/2), 
and those “far away” from the center will 
remain along the z-axis: 
 
 
 
 
 
 
 
 
 
How far is “far away”? When the offset 
becomes much larger than the RF: 
 

γGz>>γBRF (“far away”) 
 
or (equivalently) 
 

RFB
z

G
. 

 
If we were to estimate Mz at the end of the 
pulse, at points zA, zB and zC, we’d estimate: 
 
 Mz(zA=0) = 0  Tilted onto y-axis 
 Mz(zB) ≈ 0   Approximately tilted 
 Mz(zC) ≈ M0  Approximately not tilted  
 
These relationships are symmetric (e.g., Mz(-
zC) is also not tilted, and Mz(-zB) is 
approximately tilted). We could plot these 
points in a graph of Mz versus z and obtain: 
 
 
 
 
 
 
 
 
 

Now, if I were to ask you to guess how the 
entire curve looked like for all z, you’d 
probably try to interpolate and end up with 
something like this: 
 
 
 
 
 
 
 
 
 
        
         Spins in this band 
             are approx. excited 
 
This would be a good guess. I can tell you it’s 
not 100% correct. The actual curve looks 
more like 
 

 
 
but the idea remains the same: approximately 
speaking, all the spins in the area 
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are excited, while spins outside that band are 
not excited. Furthermore, since we’ve assumed 
that on-resonance our RF has been calibrated 
to yield a 90 pulse, we know that 
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meaning that we can write the condition on 
the excited region also as: 
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The slice thickness is therefore about 
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(Note: the γ used here has 2π in it, which are 
needed to cancel out the π in the nominator) 
 
2.1 Slice Thickness 

 
Using the above conclusions, we can come up 
with a recipe for exciting a slice of thickness 
Δz (e.g., Δz=3 mm) selectively: 
 

1. Turn on a gradient in the direction 
perpendicular to the slice. 

2. Apply an RF pulse for a duration T 
such that (use boxed equation above): 
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3. Don’t forget to calibrate the power of 

the RF: RF 2 TB π
γ= . 

 
Notes: 

1. The slice thickness is inversely 
proportional to the pulse’s length. 
Longer pulses yield narrower slices.  

2. Let’s do some math. The maximal 
gradient on the 3T Siemens scanner 
we have is about 45 mT/m (= 4.5 
Gauss/cm). For a 1 ms pulse, the 
slice’s thickness will be: 
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2.2 Slice Center 

 
The above discussion has shown that a 
constant RF in the presence of a gradient 
would excite a slice of a particular thickness, 
centered about z=0. How can we move the 
slice about? The answer is make the RF 
rotate. The available hardware allows us to do 
this. Technically speaking, instead of using 
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we should use 
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which is just a vector of magnitude BRF going 
around in a circle at an angular frequency ωs. 
This would end up shifting the slice’s center 
from 0 and placing it at: 
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Since ωs can be negative, so can zcenter.  
 Why does that work? Think in terms of 
rotating frames. Suppose we’re in the 
“regular” rotating frame, where ω=γGz. Note 
that at z=0, ω=0, and at z=ωs/γG, ω=ωs: 
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       Sample     Excited slice 
 

= ω=ωs 
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I won’t show why, but the spins acquire a 
phase given by 

The constant RF pulse described in the 
previous section excites a bandwidth centered 
around ω=0. The insight here is that the 
bandwidth is centered around ω=0, not z=0  
(in our case, they’re the same, but in a 
moment they won’t be). This is because the 
RF has no spatial dependence, so how can it 
differentiate between different z’s? It can’t. 
The position dependence comes from the 
gradient; but turn the gradient off, and you 
still get a selective pulse that excites certain 
offsets but not others (of course, then it 
wouldn’t be spatially selective, but spectrally 
selective). 

 
( ) 1
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To remove that phase, simply apply a gradient 
–G for a time T/2, which will add to the spins 
a phase of the form: 
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The total phase (the sum both) will be zero. 
 
 

 Consider the rotating RF in a frame that 
rotates with it; let’s call that frame a “mini-
rotating frame” (MRF). In this MRF, the zero 
frequency is centered around where ωs was 
previously. This position is not z=0, but rather 
the one for which γGz=ωs, or z=ωs/γG: 

2.4 Notation 

 
In pulse sequence diagrams, I will use 
 
 
 

 to denote selective pulses. Of course, since 
we’re after spatially selective pulses, a gradient 
will have to be applied concurrently, and a 
refocusing gradient will almost always follow: 

 
 
 
 
 
 
 
 
 
   Sample, in MRF   Excited profile 
 
Thus, the slice centered at z=ωs/γG will be 
excited. 
 
 
2.3 Phasing Issues 

 
The plot of Mz versus z shows us which spins 
got excited onto the xy-plane, but it doesn’t 
disclose anything about where in the xy-plane 
they got to. That is, what is the phase of the 
excited spins, as a function of z? It is not 0, 
because as the spins get tilted they also precess 
to an extent.  
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