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1. Motivation 

  
Imagine playing three notes on the piano, 
recording them (storing them as a .wav or .mp3 
file), and then plotting the resulting waveform on 
the computer: 
 
  100Hz   200Hz  300Hz 
 

 
 

  
 
 
 

 
 
   

 
s(t)=sin(2π×100t)+sin(2π×200t)+sin(2π×300t) 

 
 

Note: those aren’t the actual frequencies of those 
notes on a piano, I’ve just chosen simple numbers 
for the example. 

Looking at the resulting waveform really 
doesn’t tell you anything about the frequencies of 
the notes that were played. Can we recover them? 
The answer is yes, using the so-called Fourier 
transform. The Fourier transform (FT) is a “black 
box” that tells you exactly what periodicities are 
present in your signal. 
 
 

 

 

2. Definition  

 
Given a function f(t), its Fourier transform is a 

function ˆ ( )f ω , defined by 
 

 ˆ ( ) ( ) i tf f t e dtωω
∞ −

−∞
= ∫    (FT) 

 

It can be shown that, given ˆ ( )f ω , the function 
f(t) can be recovered using the inverse Fourier 
transform: 
 

 
1 ˆ( ) ( )

2
i tf t f e ωω

π
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Some notes: 

1. Other books may define the FT slightly 
differently: sometimes the FT might have 
a 1/2π factor in front of it, or the 
exponent might have a plus sign. The 
only two things that will never vary are: 
(i.) the product of the factors in front of 
the integral of the FT and the inverse FT 
will always equal 1/2π. (ii.) If the FT has 
a minus sign in the exponent, the IFT 
will have a plus sign, and vice versa. 

2. Don’t be afraid of the e-iωt factor. You can 
treat it as you would any other exponent 
(now, if you’re afraid of exponents, that’s 
another problem). Examples: 

a. i t i td
dt e i eω ωω=  

b. 1 i∫ i t t
ie dt eω ω
ω=  

c. ')ie ω ω  ' ' (i t i t i t i t te e eω ω ω ω+ += =

3. As you’ve noticed, ( )f̂ ω  might be a 
complex valued function, e.g. 

3 5 2( )f̂ i= − . Therefore it has both a 
magnitude and a phase as any other 

complex number: ( )) | ie( )ˆ ˆf f| ( φ ω .  ω ω=
You can think of the FT as a black box, that takes 

one function f(t) and spits out another, ( )f̂ ω : 
 
 
 

   f(t)      ( )f̂ ω  
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3. Computation 
 
3.1 Example #1 

 
Ok, enough talk. Let’s work out a simple example. 
Let’s take a rectangular function: 
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We compute: 
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Now I’m going to use an identity: 
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with / 2x Tω=  and obtain: 
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where sinc(x) = sin(x)/x by definition. We plot the 
results: 
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If we’ll take the resulting sinc function and apply 
the IFT to it we’ll get the rectangular function 
back. However, that calculation is a bit tricky and 
requires complex calculus, so we won’t attempt it 
here; you’ll just have to take my word for it that it 
works. 
 
3.2 Example #2 

 
Going back to the motivating example in section 
(2.1), remember we got a signal s(t) that didn’t 
really tell us much about the frequencies that made 
it up: 
 
 
 
 
 
 
 
If we were to apply the FT to it, we would obtain 
something that’d look like this: 
 
 
 
 
 
 
 
 



 
 
 
 
 
             
               ω 
     2π100   2π200    2π300 
 
The ω axis is 2π times the frequencies of the 
original notes (ω is sometimes called the angular 
frequency). Each “peak” would tell us that a 
particular note on the piano were present. The 
peaks are independent in the sense that, if we were 
to drop the middle note, the middle peak would 
disappear but the other two would be unaffected. 
The height of the peaks indicates how strong we 
hit each key (the loudness of each frequency) – in 
this case I’ve assumed all keys were struck with 
even force. 
 



4. The 2D/3D Fourier 

Transform  

 
The FT we’ve encountered so far was one 
dimensional. That is, it took it a function of one 
variable and gave us back a function of one 
variable: 
 

( )ˆ( ) FTf t f ω→ →  
 
There is also a 2D FT, that takes as its input a 
function of two variables and returns another 
function of two variables; and a 3D FT, that takes 
as its input a function of three variables, x, y & z, 
and returns another function of three variables, kx, 
ky, kz: 
 

( )( ) FTf f→ →r k  
 

where ( , , )x y z=r  and ( ), ,x y zk k k=k  are 

coordinates on a 3D grid. The 3D FT is defined 
as: 
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Here x y zk x k y k z⋅ = + +k r  is the scalar product 

of the two vectors, k and r. Contrast this with the 
1D FT: 
 

( )ˆ ( ) i tf f t e dtωω −= ∫  

 
The 3D FT behaves in exactly the same manner as 
the 1D FT: it “detects” periodicities in the 
function f(r). However, just looking at the 2D (or 
3D) FT of a 2D (or 3D) function rarely tells you 
anything about it. For example, here are two 
totally distinct images, and the logs of the 
magnitude of their corresponding FTs (the 
magnitude of the FT has a wide dynamic range, so 
one often looks at its log): 
 

 
 
An image, by the way, can be regarded as a 2D 
function, f(x,y), with f(x0,y0) being the brightness 
of the pixel at (x0, y0).  
 The inverse FT, in 3D, is given by: 
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Let’s think for a moment in 2D. We can think of 
the 2D FT, f(k)=f(kx,ky), as a function defined in 
the kx-ky plane. The values of f(k) at the center of 
this “k-plane” represent the “slowly-varying 
frequencies” of the function, and are hence 
responsible for the gross-features of the image; 
conversely, the values of f(k) away from the center 
represent the “fast components” of the image, and 
hence usually they make up the edges and sharp 
features of the image. For example, here is a 
picture with just the center of the k-plane retained: 
 

 
 



Note how blurred the image seems: the sharp 
features (the edges) have become less defined, 
because we’ve removed the “fast” components of 
the image. Likewise, by removing mainly the 
center of the k-plane: 
 

 
 
we remain with just the “fast”, discontinuous 
components, such as the edges. 


