
III 

Spins and their 

Thermodynamics 
 

 
On the menu: 

1. Relaxation & thermal equilibrium 
2. Relaxation: phenomenology (T1, T2) 
3. Relaxation: microscopic description 
4. T2* dephasing 
5. Measuring T1, T2  and T2* 

 
We’ve remarked: 
 
 
 
 
 
 
 
 
 

 
The three questions of relaxation: 

1. What is the equilibrium state? 
2. How do the spins return to it? (macro) 
3. Why do the spins return to it? (micro) 

 
 
1. Thermal Equilibrium 

 
1.1 Boltzmann’s Principle 

 
The whole of statistical physics rests on the 
following Boltzmann hypothesis: at thermal 
equilibrium, the probability of the system being in 
a state with energy E is: 
 

( ) 1 /Pr E kT
ZE e−=  
 

where Z is a constant number independent of the 
energy or kT. If you have N states with energies 
E1,…,EN, then the probability of being in state i is: 
 

( ) 1 /Pr iE kT
Zi e−=  
 

We want this to be an actual probability, i.e.,  

1. Be between 0 and 1. 
2. Sum to 1. 

 
So: 
 

( ) ( ) ( )1 2Pr Pr ... Pr N 1+ + + =  
 

or 
 

11 1 1// ... NE kTE kT
Z Ze e−− + + =  

 
This allows us to solve for Z: 
 

1 // ... nE kTE kTZ e e−−= + +  
 

1.2 Thermal Equilibrium of Spin-1/2 

 
This is the only point in our lectures where we’ll 
use the quantum-mechanical nature of spin. 
Quantum mechanics tells us a spin-1/2 in a field 
B0 has two energy levels: 
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This does NOT mean a spin must point along B0 
in thermal equilibrium. It only means that 
statistically.  
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We now ask: what is the average magnetic moment 
of (one) spin ½ at equilibrium? 
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If we knew that, then for N non-interacting spins 
(and spins are non interacting in our world, let me 
assure you) at equilibrium, 
 

ˆzN m= < >M z  



 
which would be our equilibrium magnetic 
moment. So we really just need to compute <mz>. 
 Now, 
 

0 0
2 2

B B
kT kTZ e e

γ γ−= +  
 

This unpleasant expressions can be simplified 
considerably if we remember that, for small a 
(<<1): 
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In our case, at room temperature (homework!),  
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so we can simplify: 
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Hence, 
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So, what is the average magnetic moment of a spin 
½ at equilibrium? 
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and, for N spins, 
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   Equilibrium magnetic moment 
 
 

You will show in the homework that, for a 1 cm3 
voxel with just water (tissue has ~ 70-80% water, 
so that’s reasonable), 
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Note this has units of energy per unit field. You 
can think of it as the amount of energy you create 
when you put the water in a field of such and such 
Tesla. It’s quite small! 
 Some notes: 
 

1. M0 is small. 
2. The signal we measure will be 

proportional to M0. 
3. Hydrogen nuclei (water!) have the largest 

g and hence the largest signals. How 
lucky we are that nature somehow turned 
out that way! 

4. Proportional to B0: want a larger signal? 
Go to higher fields. 

5. Careful when using this formula. N is 
basically determined by the natural 
abundance, etc. For example, if you have 
100 water molecules then N should be 
200, because you have 2 Hydrogen atoms 
per molecule. Actually it should be more 
like 200*0.99985 if you’d like to take 
into account Hydrogen’s natural 
abundance (99.985%). 

 
 
2. Phenomenology 

 
2.1 T1 and T2 

 
 
 
 
 
 
 
 
 
       What happens here? 
 
It turns out that the component of magnetization 
perpendicular to B0 (z-axis) and the component 
parallel to it “relax” differently. 
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Every magnetization vector M can be decomposed 
to a parallel component (to B0, here parallel to  z) 
and a perpendicular one: 
 
  B0 
 
 
 
 
 
 
 
 
It turns out: 

1. The transverse magnetization gets “eaten 
up” and eventually disappears with a time 
constant T2. Usually T2 ~ tens of ms in 
tissue. 

2. The longitudinal magnetization gets 
“built up” back to its equilibrium value, 
with a time constant T1 which is always 
larger (but not always by much!) than T2. 

3. Remember, T1≥T2 always. This means 
the transverse magnetization gets “eaten 
up” faster than the longitudinal 
magnetization gets “built up”. 

 
Here are some typical values (taken from Haacke 
1999): 
 
     T1 (ms)  T2 (ms) 
 GM   950   100 
 WM   600   80 
 Muscle   900   50 
 CSF   4500   2200 
 Fat    250   60 
 Blood   1200   100 (venous) 
  
Here’s a “movie” of what’ll happen in a tissue with 
T1>>T2 such as GM or WM (so transverse 
relaxation occurs “before” longitudinal): 
 
 
 
 
 
 
 

Initially …      T2 relaxation  T1 relaxation 
 

2.2 Bloch Equations 

 
Bloch found that the equations we’ve found last 
chapter, 
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in components: 
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can be modified to describe the relaxation 
phenomenologically: 
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Notes: 

1. M0 is the thermal equilibrium 
magnetization, computed last section.  

2. These equations hold in the rotating 
frame as well.  

3. Note how Mx, My has new terms with T2 
and Mz has a new term with T1, 
expressing the fact the longitudinal and 
transverse relaxations occur with different 
time rates. 

 
What can we make of these? Let’s look at a simple 
case:  

1. We’ve just excited our spins. 
2. We’re on resonance (no offset, Bz=0). 
3. No irradiation (Bx=By=0). 

Our equations become: 
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with the initial condition 
 
 
 

00 ˆ( )t M= =M x  
 

 
 
 
 
We can solve these equations. First, My=0 initially 
and it will stay so, because My=0 solves the 2nd 
equation. How about Mx? This is a typical 
differential equation y’=ay with a solution 
y(t)=y0eax.  Hence, the solution is: 
 

2
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/( ) t T
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Mz is slightly trickier to solve for, and I’ll leave that 
as a homework problem. The solution is: 
 

( ) ( )1
0 1 /t T

zM t M e−= −  

 
Plotted (for M0=1): 
 

500 1000 1500 2000 2500 3000
Time Hms L

0.2

0.4

0.6

0.8

1.0
a. u.

Relaxation in Grey Matter HT1=950 ms, T2=100 msL

Mz H tL

MxH tL

 
 
In general: 

1. Your spins rotate with the applied 
external fields. 

2. Meanwhile, T2 and T1 act in the 
background, causing the magnetization 
to slowly return to its equilibrium. 

 
 
3. A Look Under the Hood 

 

3.1 Microscopic Mechanism 

 
What causes relaxation? We have three 
mechanisms to account for: 
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1. Red: why do Mx, My decay? 
2. Green: why does Mz changes with a 

different time constant, T1? 
3. Blue: why does buildup occur? 

 
The buildup part (#3) is difficult to explain and 
we’ll have to leave it at that. The decay of M, with 
different transverse & longitudinal times, will be 
explained next. 

The nuclear magnetic moments each create 
their own fields: 
 

 
 

Now think about the following experiment: take 
two spins, fix one and move the other one about. 
Just by virtue of moving, the field “felt” by the 
spin changes: 
 
 



 
(Red: magnetic field) 

 
Since all water molecules keep tumbling and 
moving around (a.k.a. brownian motion), each 
sees the main field + a fluctuation field created by 
the other spins. These fluctuating fields are what 
cause relaxation. You can think of the spin of a 
single molecule as “tumbling” on the surface a 
sphere: 
 
 
 
 
 
 
 
 
 
 Without fluctuating  With fluctuating 
 fields: precession   fields:  precession + 
        erratic “jumps” (not 
        drawn to scale, etc.) 
 
with the end result being the total magnetic 
moment decays back to equilibrium. 
 The fluctuating fields BD felt by a spin can also 
be composed into transverse & longitudinal 
components: 
 

, ,( ) ( ) ( )D D Dt t⊥= +B B B t  
 

The longitudinal fluctuating field causes transverse 
relaxation and the transverse fluctuating field 
causes the longitudinal relaxation. 
 
3.2 Transverse Relaxation 

 
Why does the transverse magnetization get “eaten 
up”? Let’s work in the lab frame. Imagine first no 
fluctuating fields. A bunch of spins in an 

isochromat would all rotate with the same Larmor 
frequency, ω0=gB0. 
 Now imagine each spin feels a fluctuating field 
along the z-direction, so its precession frequency 
also becomes time dependent: 
 

ω(t)=g(B0+BD,||(t)) 
 
 

 
Total 
field =  
 
 
 
    Main B0 field  Smaller dipolar  

(large, ~ Tesla) fluctuating 
longitudinal  
field (~  

 
Imagine exciting a spin onto the xy plane. Without 
the fluctuating field, it would just execute 
precession and make a phase f=gB0. With the 
fluctuating field along z the precessing frequency 
fluctuates as well, with the end result being a 
slightly different precessing frequency at the end, 
f+Δf, where Δf depends on the exact nature of 
the fluctuations (imagine turning a wheel with a 
shaking hand): 
 
 
 
   
 
 
 
 
  No fluctuations  With fluctuations 
  (“Firm hand”)   (“Shaky hand”) 
        Note here Δf<0 
 
Now imagine a number of spins. In the absence of 
fluctuations they would all make the same angle. 
In the presence of fluctuations, they would fan out 
(remember, each spin feels a different fluctuation): 
 
 
 
 
 

f+Δf f



 
 
 
 
 
 
 
 
  
 Many spins,      Many spins, 
 no fluctuations.     fluctuations. 
 (microscopic view)    (microscopic view) 
 
This is what happens microscopically. Now, the 
macroscopic magnetization is the (vector) sum of 
the microscopic magnetization. What happens 
when you sum vectors that don’t point in the same 
direction? They (partially) cancel out. Example: 
 
 
 
 
 
 
 
 
 
 
 
Top: summing 4 vectors not pointing in the same 
direction. Bottom: all 4 vectors point in the same 
direction. In both cases, the “mini-vectors” (blue) 
all have the same size. You can now see why the 
magnetization in the plane decays: 
 
 The fluctuating z-field causes the spins to 
 spread out (dephase), and hence add up 
 destructively, leading to a decay of the 
 macroscopic magnetization vector, M. 
 
How fast does M decay – what determines T2? 
Quite simply: the rate of fluctuations. Fast 
fluctuations will result in lesser dephasing and 
hence slower decay.  

An analogy might help see this: think of 
diffusion. Molecules randomly change their 
direction upon colliding with each other. It should 
be intuitively apparent that, the lower the 
concentration of your sample, the larger the 
diffusion. Here the story is the same: you can think 
of the spin as “diffusing” under the action of the 

fluctuating field – slower fluctuations mean “fewer 
collisions” and hence a “less dense” environment, 
leading to greater “diffusion” (dephasing, in our 
case). 

This directly relates to molecule sizes, because: 
 
 Large molecules  

 Tumble slowly 
   Slow fluctuations  

 Small T2 (fast  decay) 
 
 Small molecules  

 Tumble fast 
   Fast fluctuations  

 Small T2 (slow decay) 
 
Hence we can draw this graph: 
 
      T2 
  Slow 
  decay 
 
 
 
  Fast 
  Decay        Tumbling 
    Slow /    Fast / 
    Large mol.   Small mol.  
  
In tissue, water can be free (A) or in the vicinity of 
large macromolecules (B), which slow it down and 
lengthens its T2: 
 

 
 Fast, long T2   Slower, shorter T2 
 
In a solid, where there is almost no motion, T2 is 
extremely short: 
 

f 



 
 

This is why, e.g., bone cannot be imaged (it’s a 
solid with T2 ~ 0.01 ms - it returns to equilibrium 
too fast for us to measure it!). 
 
3.3 Longitudinal Relaxation 

 
The x & y components of the fluctuating fields 
cause longitudinal relaxation. This can be easily 
understood if you can think of these fields as tiny 
“RF pulses” that tilt the magnetization.  
 Remember the idea: for an RF pulse to be 
successful, it needs to be on resonance. The rate of 
fluctuations determines whether the RF is on 
resonance or not: when the field fluctuates at the 
same frequency as the spin, 
 

ωfluctuations = ω0 = gB0 
 
the tiny “RF pulses” tilt the magnetization back to 
equilibrium much more efficiently, hence making 
T1 shorter. Too fast or too slow – and you won’t 
be on resonance anymore, diminishing the 
relaxation.  
 As before, we can draw: 
 
        T1 
  Slow 
  decay 
 
 
 
  Fast 
  decay        Fluc. rate 

    Slow    Fast 
    Large mol.   Small mol. 
 
In solids, for example, we saw T2 is very short, but 
T1 will be very long.  

As an interesting application, let’s apply our 
microscopic insight to understand why T2 and T1 
values in tumors are larger than in regular tissue. 
Cancer is usually edematous: cells swell with water, 

making the macromolecule concentration lower, 
making the water molecules tumble faster, 
increasing T2 and T1. 

 
 Cancer  Swelling  

 Lower macromol. concentration  
 Faster tumbling of water molecules 
 Larger T1, T2 (slower decay) 

 
4. T2* Dephasing 

 
An additional source that causes the macroscopic 
magnetization M to diminish in size is known as 
T2’ dephasing. It is caused by spatial field 
variations along the z-direction: 
 

( )0 0 0      ˆ ˆB B B z⎡ ⎤⎯⎯→ + Δ⎣ ⎦z z  

 
This leads to dephasing, this time between spins at 
different locations (adjacent or not): 
 
 
 
 
 
 
 
 
 
 
  The spins in the body are excited and  
  left to evolve. Tiny variations in the main 

In bio. tissue we are 
in the fast regime   field mean spins at different positions 

  precess with slightly different angular 
  velocities and eventually “get out of sync” 
  (i.e. dephase) 
 
Contrast this with T2, which is caused by temporal 
field variations: 
 
 Field variations cause relaxation: 
  Spatial, constant    T2’ 
  Temporal fluctuations  T2 
 
What causes these field non-homogeneities? 

1. Hardware imperfections of B0. 
2. Susceptibility artifacts: the external field 

B0 = B0z affects the electron spins in 
different parts of the body slightly 
differently, depending on the properties 



of the tissue. This creates small variations 
in the z-field B0. 

 
In the Bloch equations, both T2 and T2’ play a 
smilar role. For example, for the x component, 
instead of 
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we’d have: 
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In general, one introduces a new decay quantity, 
T2*, that combines the effects of both T2 and T2’: 
 

2 2 2
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This way we can rewrite the bloch equations – e.g., 
for the x-component: 
 

2 *
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    Takes into account both 
    field fluctuations (temporal) and 
    inhomogeneities (spatial) 
 
 
5. Measuring T2, T1, and T2* 

 
5.1 T1 - Inversion Recovery 

 
To measure T1 of water, consider the following 
experiment: 
 
 

    π 
   
    TI 

           Acquire 
  A  B         C  D   
 
Let’s go through what happens to the 
magnetization at each of the points outlined above. 
A.) The magnetization is at thermal equilibrium, 
B.) A hard π-pulse is used to flip the magnetization 
onto the –z axis. 
C.) We wait a time TI. Longitudinal relaxation 
kicks into effect. 
D.) We excite the spin onto the xy-plane and 
measure. For the sake of simplicity, we can take 
the magnitude of the initial signal. 
 
 
 
 
 
 
 
 
 (A.) Thermal eq.     (B.) After π-pulse 
 
 
 
 
 
 
 
 (C.) After time TI      (D.) Precession 
         (measure) 
 
 
The amount of decay depends on the time TI we’d 
wait. We can solve the Bloch equations: 
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To solve, substitute: 
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so: 
 

( ) 1
0

1
         2 /t TdY Y Y t M e

dt T
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Substituting back Y in terms of Mz, we recover the 
solution: 
 

( ) 1
0 1 2 /t T

zM t M e−⎡ ⎤= −⎣ ⎦  

 
This will determine the amplitude of the signal 
after waiting a time TI. We can imagine a set of 
experiments done with different TIs. In each 
experiment, the maximal value of the signal is 
taken: 
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TI = NΔT 
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Next, you can imagine taking the initial amplitude 
of each decay and graphing it. You will then be 
able to directly observe the decay of Mz and deduce 
T1: 
 
   initial signal 
 
 
              

  TI 
 
 
 

By fitting this decay curve to 
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you can find T1. This is called an inversion 
recovery (IR) experiment. 
 
 
5.2 T2 – Spin Echo Experiment 

 

Imagine having a sample with spins having 
different offsets.  This can come about in several 
ways, and here are two: 

1. Non-homogeneity (T2’) of B0. 
2. A gradient is turned on. 

Once you excite the spins from thermal 
equilibrium, they begin precessing at different 
rates, and eventually “spread out” in the xy-plane. 
This means that, if you were to acquire their 
signal, it would slowly die out because the spins 
would end up pointing in all sorts of directions 
and add up destructively (remember, the signal is a 
vector sum of the spins in the xy-plane): 
 
 
 
 
 
 
 
 
 
 
 
 
 

Excite & measure 

Excite & measure 

Excite & measure 

Excite & measure 

Following excitation, all 
spins point in the same 
direction 

However, since each spin 
precesses at a different 
rate (= different colors), 
they end up dephasing 



What would happen if we were to apply a 180 
pulse along, say, the x-axis, after a time T? The 
pulse would invert our spins: 
 
 
 
 
 
 
 
 Before 180x pulse   After 180x pulse 
 
However, note the interesting part: if we were to 
wait an additional time T, the spins would end up 
re-aligning along the x-axis: 
 
 
 
 
 
 
 
 After 180x pulse    After additional time T  
 
The reason for this can be understood by thinking 
of a particular spin: suppose a particular spin 
acquired some phase φ just prior to the 180 pulse. 
After the pulse, its phase would be -φ. After a time 
T its phase would increase by φ once again, so its 
phase at the end would be (-φ)+φ = 0, i.e., it’s back 
at the x-axis.  If we’d continue acquiring 
throughout this experiment, we’d end up seeing 
the signal revive back again. This is called a spin 
echo. In terms of pulse sequences: 
 
 
 
Signal 
 
          90-y       180x 
      T     T 
RF 
 
 
What would happen if we were to give successive 
180x pulses, spaced 2T apart? One might initially 
think this pattern would repeat itself indefinitely, 
since the spins would dephase, get flipped (by the 
180), rephase, dephase again, get flipped (by the 
180), rephase, dephase, ... ad infinitum; in effect, 

there is relaxation that needs to be taken into 
account. But what relaxation? This spins are in the 
plane, but  it’s not T2*; rather, it is T2. Because the 
180 pulse refocuses spins with different precession 
frequencies, there are no T2’ effects in the overall 
decay. Only the “true microscopic decay”, T2, 
plays a role here: 
 
   Envelope ∝ e-t/T2 
 
 
 
  90   180        180        180       180 
       T  2T    2T     2T 
 
 
The decay after the excitation is determined by T2* 
(by both microscopic field fluctuations and field 
non-homogeneities), but the overall decay of the 
echoes is determined by T2 alone. This furnishes us 
with a method of measuring the “true” T2 
microscopic decay of a sample. 


