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1. Excitation 

 
1.1 UUWhy Excite? 

 
Let us recant the facts from the previous lecture: 

1. We’re interested in the bulk 
(macroscopic) magnetization. 

2. When put in a constant magnetic field, 
this bulk magnetization tends to align 
itself along the field: 

 
 
 
 
 
 
 
 
 
 
 
 

3. The macroscopic magnetization precesses 
about the external magnetic field. 

 
In MRI, we can only detect a signal from the spins 
if they precess and therefore induce a current in 
our MRI receiver coils by Faraday’s law. However, 
this poses a problem: when we put our patient in 
an MRI machine, the spins in his/her body align 
along the field. They remain that way indefinitely, 
so no precession will occur.  
 
 
 
 
 
 
  A schematic representation of the 
  bulk magnetization vectors in our 
  body in the presence of an external 
  field, at equilibrium. 
 

For the spins to precess, and for us to detect them, 
we need to somehow force them away from 
equilibrium – for example, make them 
perpendicular to the main field:  
 
 
 
 
 
 
 
If we do this and let them be, two things will 
happen: 

1. They will precess about B0 at a rate1 gB0. 
2. Eventually they will return to equilibrium 

because of thermal relaxation. This 
usually takes ~ 1sec, but can vary.  

Until they return to thermal equilibrium their 
signal is “up for grabs”, which is precisely the idea 
of a basic NMR/MRI experiment: 

1. Excite the spins. 
2. Measure until they return to 

equilibrium. 
 
What to exactly do with the measured signal and 
how to recover an image from it is something we’ll 
discuss in subsequent lectures. Meanwhile, let’s 
just ask ourselves how can one excite a spin? That is, 
how can one tilt it from its equilibrium position 
along the main field and create an angle between 
them (usually 90 degrees, but not always)? 
 
1.2 UUThe RF Coils 

 
Fortunately (or perhaps unfortunately), our 
question has been answered a long, long time ago: 
 

To excite a spin, irradiate it with an external, 
perpendicular magnetic field at its resonant 
frequency gB0. 

 
This is called “on-resonance irradiation”. The 
external resonant field is achieved using an external 

                                                           
1 For correctness we should add the chemical shift 
here, but for now we’ll just focus on water and 
incorporate the shift later. In fact, everything we 
say here can be easily generalized by replacing B0 
by B0+ΔB. For water, ΔB is a well known quantity. 
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RF coil built into the MRI machine. These come 
in various shapes, such as birdcage: 
 

 
 
This coil is ideally capable of generating a 
homogeneous, time-dependent RF field in the 
transverse plane (transverse to B0), often called the 
B1-field: 
 
 
 
 
 
 
 
 

The RF field. This picture emphasizes two important 
points: (i.) BRF is always perpendicular to B0. (ii.) It is 
always much smaller than B0 (in magnitude). 
Usually, |γBRF|~ kHz, while |γB0| ~ MHz. The 
birdcage coil envelopes the object in question, much 
like the main field’s coils. 

 
The RF field looks like this, analytically: 
 

( ) ( )( )1RF RF RFt B t tφ φ⎡ ⎤ ⎡ ⎤≡ +⎣ ⎦ ⎣ ⎦B x yˆ ˆ( ) cos sin  

 
 
  Amplitude        Phase of RF 
 
with 
 

0RF RFt tφ ω φ= +( )  
 
 

  Frequency of RF  Constant Phase of RF 
 
Some call the entire φRF(t) “the phase of the RF”, 
and others refer to just φ0 as the same. In this 
course we’ll associate ourselves with the first group. 
When I’d like to make it clear I’m talking about 
φ0, I’ll call it the “constant phase” (it is constant, 
after all). 
 

 

The total magnetic field felt by a spin is, therefore: 
 

( )0 ˆ( ) RFt B t= +B z B  
 

 
   Main field.    RF field. 

Along z-axis.   In xy-plane. 
   Constant.    Time-dependent. 
 
One often denotes 
 

1 1Bω γ=  
 

The geometric meaning of RFω  can be 
understood by simply plotting BRF(t) as a function 
of time. We then find out that ωRF is the angular 
frequency of the RF field vector in the xy-plane: 
 
 
   B0+ΔB 
        z     Total B 
 
 
 
 
             y 
 
 
    x 
 
 
 
   The RF field vector BRF(t) 
   goes around in a circle with 
   constant angular velocity ωRF. 
 
To make this even clearer, let’s plot the entire field 
felt by the spins (each spin feels the same field), 
which equals the constant B0 field + the rotating 
BRF field: 
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1.3 UUThe Rotating Frame 

 
Remember a nuclear spin precesses in a magnetic 
field B with a frequency given by: 
 

Bω γ=  
 

In particular, in the main field, B0, it precesses 
with the following angular frequency about the z-
axis: 
 

0L Bω γ=   (Larmor Frequency) 
 

There is also the chemical shift, but we’ll neglect it 
for now for simplicity, and come back to it a bit 
later. What does it mean “to irradiate a spin at its 
resonant frequency”? It means we need to match 
the frequency of the RF field to that of the spin: 
 

RF Lω ω=  
 

Why this works can be best understood by looking 
at things in a frame that rotates along with the RF 
field vector, called the rotating frame. This is 
sometimes called “transforming to the rotating 
frame”. 
 To understand how to perform this 
transformation, we take an analogy from 
mechanics. Image the earth going around the sun 
in a circle: 
 
 
 
 
 
 
 
 
 
This can be understood by an observer in space the 
following way: the Earth wants to “go forward” 
but gravity pulls it “inward”, curving its path into 
a circle. In effect, the Earth is continuously 
“falling” into the sun, but escaping doom thanks 
to its tangential velocity. All this is all a 
consequence of Newton’s second law, F=ma. 
 Now imagine how things would look to an 
observer standing on the sun and rotating with it. 
Neglecting for the time being the weather on the 

surface, the Earth would appear stationary to such 
an observer:  
 
 
 
 
 
 
 
 
 
 
If that observer would try to use Newton’s law 
F=ma to understand his world he would fail: 
according to F=Fgravity=ma, earth should be falling 
towards the sun, but it isn’t! The truth is that 
when you transform to a rotating frame you need 
to add a fictitious force. That is, you need to pre-
suppose a force which doesn’t arise out of any 
physical source, called the centripetal force, to 
explain how it is possible for the earth to remain 
stationary: 
 
 
 
 
 
 
 
 
 
 
 
So, in mechanics when you try to understand 
things in a rotating frame you need to do two 
things: 

1. Understand how things in the “real” 
frame would look in the rotating frame 
(e.g., the Earth would remain still). 

2. Add fictitious forces (e.g., the centripetal 
force). 

A similar thing happens when you go to a rotating 
frame in magnetic resonance, rotating with the 
same angular velocity as the RF field: 
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          ωrot=ωRF 

 
 
 
 
 
 
 

1. Understand how the magnetic field’s 
vector in the “lab” frame would look in 
the rotating frame (it would be 
stationary). The black vector is the total 
RF field:  

 
 
 
 
 
 
 
 
 
                                                           
 

2. Add a “fictitious field”, rot ˆγω− z , which – 
since we’ve chosen RF Lω ω=  -  has size 

rot Lγω γω= , i.e., it’s the same size as the 
main field but opposite in sign and hence 
cancels it (black vector = total magnetic 
field): 

 
 
 
 
 
 
 
 
 
 
 
So transforming to the rotating frame makes our RF 
constant and in the xy-plane2.  

                                                           
2 Note that it may also have a constant phase f0, 
meaning it won’t point along the x-axis (but still 
be constant) 

 Note that the RF can have a constant phase, 
φ0, as noted above: 
 

( ) 0RF RFt tφ ω φ= +  
 
 

   Frequency     Const. phase 
 

This phase means that, in the rotating frame, the 
RF itself will have a phase as well: 
 
 
 
 
 
 
 
 
 
 
 
  Lab frame     Rot frame 
  (Rotating)     (Constant, no z) 
 
 In the lab frame our spins start off along the z-
axis. This also holds in the rotating frame: 
 
 
 
 
  B1 
 
 
 
 
 
   (in the rotating frame) 
 
What happens to a magnetic moment in a 
magnetic field B1? It precesses around it with an 
angular frequency ω1=gB1! 
 
 
 
 
          ωprecess=gB1 
         
 
 
 

In the rot. 
frame, the RF 
is constant 

Adding the 
fictitious field 
cancels out 
the main  B0 
field 

φ0 



So here is our plan for getting the spins 
perpendicular to the main field: 

1. Irradiate the spins on resonance. 
2. Wait for enough time until the spins 

reach the xy plane (complete a quarter of 
a circle). 

3. Turn off the RF field. 
All this happens in the rotating frame. How do 
things look back in the lab frame? This takes a bit 
of imagination to see: 
 
 
 
 
 
 
 
 
 
 
 
 
 Rot. Frame     Lab. Frame 
 
I’ll leave that one up to imagination (you need to 
superimpose the rotation of the frame on the 
precession). 

The angle the spin precesses by is given by 
 

θ=ωt=gB1t 
 
Therefore the resonant RF field should be applied 
for a time 
 

π/2 = gB1tπ/2 
 

that is 
 

tπ/2 = π/2gB1 
 
Note we still haven’t said how to choose the 
magnitude of B1. The stronger B1, the shorter tπ/2. 
We’ll usually desire the shortest pulses possible. 
One reason is that the longer we wait, the more 
time we waste and the more the thermal relaxation 
effects become a nuisance.  

Some numbers are in order. For typical MRI 
scanners,  
 B1~ 10μT 
 g = 2π × 42 MHz/T 

yielding 
  

2 6MHZ
1 T

1 0 5 ms
2 4 42 10 T/ ~ .t

Bπ
π
γ −

= =
× ×

 

 
which is the “right order of magnitude”. Exact 
values will vary depending on the hardware. 

The rotating frame is of utmost importance in 
MRI because of the following fact: 

 
This is a result of the way the MRI hardware 
works. All signals we measure are given as if we’ve 
measured them in the rotating frame. You’ll have 
to take that as an axiom. Therefore, unless 
otherwise specified, we shall continue “living” in 
this rotating frame and forget about the lab frame, 
except at special points which I’ll mention. 
 
1.4 UUA Short Summary 

 
We summarize: 

1. MR is easier to understand in a rotating 
frame. 

2. MR “happens” in the rotating frame. 
3. The rotating frame’s frequency ωrot is 

always chosen to coincide with the RF’s 
frequency, ωRF. 

4. The rotation introduces a “fictitious 
field” -ωrot/gz = -ωRF/gz. 

 
It is important to make a distinction between all 
the ω’s we’ve collected so far. 
 
 Spin 
 ω0 = gB0  Precession due to main field 
 ωcs = gBcs  Chemical shift 
 ωL=ω0+ωcs  The Larmor frequency 
  
 RF 
 ω1 = gB1  Strength of RF field (in Hz) 
 ωRF    Frequency of RF field 
 
 Rot. Frame  
 ωrot = ωRF  Rotating frame angular velocity 
 -ωrot/g   The “fictitious field” introduced 
    

MRI takes place in the rotating frame. 



 
1.5 UUThe Offset 

 
So far we’ve assumed 
 

RF Lω ω=  
 

Pictorially: 
 

  ωL       ω0 
 
 

        ωcs 
  ωRF 

 
However, this isn’t possible always when you have 
more than one chemical species in your sample. 
For example, fat and water have different Lω  . 
You can’t irradiate on resonance when you have 
more than one resonant frequency!  
 
 
                  (fat)

Lω        (water)
Lω    ω0 

 

 

 
  Example: on resonance for fat 
  “off-resonance” for water 
 
You can set the irradiation frequency on the MRI 
machine. A “reasonable” choice might be in the 
middle: 
 
                  (fat)

Lω        (water)
Lω    ω0 

 
 
 
         ωRF 

 

This is called off-resonance irradiation, and we 
need to understand how to think about it. Before 
we do, some terminology: the difference 
 
 L RF L rotω ω ω ω ωΔ = − = −  
 
is called the offset of the spins. Each species has a 
different offset. For example: 
 

 
( ) ( )

( )( )

water water
L RF

fatfat
RFL

ω ω ω

ω ω ω

Δ = −

Δ = −
 

 
Offsets, much like the chemical shifts, are “small”: 
they usually range in the Hz-kHz ranges. 

 
 
 
 

1.6 UUOff-resonance Irradiation 

 
How do “off-resonance” spins behave in the 
rotating frame? Let’s pick a particular spin with a 
particular cs and Larmor frequency. Remember 
the rotating frame rotates with the same frequency 
as the RF field, so the RF is constant, and 
remember it adds a term -ωRF/g to the z-field.  
 
 
 
 
 
 
 
 
 
 
In lab frame: 
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How does B look like in the rotating frame? 
 
   Field in   Field in  
   Lab.    Rot. 

z Axis  ( )0 ˆcsB B+ z   0 ˆrot
csB B

ω
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So: 
 
 
 
 
 
    effective B 
          Δω/g 
   
      B1 
 
 
 
So on-resonance (Δω=0), the RF field is along the 
x-axis (or another axis if it has a phase). Off-
resonance spins get an additional small field Δω/g 
added. This field is called the effective field: 
 

     1ˆ ˆeff Bω
γ
Δ= +B z x  

     The effective field 
 

The “basic rule” of spin dynamics still applies: 
a spin in a magnetic field B precesses around it 
with an angular frequency gB. All spins start out 
along the z-axis and precess about the effective 
field. Note that since the effective field’s 
magnitude is different for different spins, the 
precession’s angular velocity ω=g|Beff| also depends 
on the spin’s chemical shift/offset. 

Some graphical examples: 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
On resonance  Small offset  Large offset 

    Δω<<gB1   Δω>>gB1 
 

 
1.7 UUThe “Hard” π/2 Pulse 

 
The question: how can we excite all the spins, both 
on and off resonance?  
The answer: irradiate for a short amount of time as 
possible with a strong-as-possible RF (strong = 
gB1>>all offsets Δω). 
The rationale: as the graphical examples in the 
previous section have shown, when the offset is 
“small” (compared to the RF), the spin almost 
reaches the xy-plane. This is good enough for us. 
Thus, we need to make sure the RF is strong 
enough for the offsets to be small enough to be 
negligible! 
 This short, strong RF irradiation is called a 
hard π/2 pulse: 
 Hard = affects all offsets similarly 
 π/2 = brings them to the xy plane (almost!) 
 Pulse = MRI jargon for RF irradiation 
Some notes: 

1. It is possible to apply hard RF pulses with 
different constant phases. This tips the 
magnetization vector onto different 
positions in the xy plane. One usually 
denotes:  x = 0°,  y = 90°,  –x = 180°, –y 
= 270°. Also, π/2 is sometimes called a 
“90-pulse” (unsurprisingly, since it tilts 
the magnetization by 90 degrees onto the 
plane).  

2. It is possible to irradiate for longer 
amounts of time and create hard 180 
pulses (a.k.a. π-pulses), 270-pulses, and 
any angle in between. 

3. Notational convention: a hard π/2 pulse 
with a phase φ is often denoted 90φ. 
Some examples (starting from thermal 
equilibrium magnetization, & remember 
the left hand rule!): 



 
 
   90x       90-y      180y 

 
 
 
 
 
 
 
(All examples are presented in the rotating frame) 

 



2. Life in the Transverse 

Plane 

 
2.1 UUPrecession 

 
Once we excite the spins onto the xy-plane and 
leave them there, they will precess about the 
effective field. When we turn off the RF, we’re 
only left with the offset’s field: 
 
 
 
 
 
 
 
 
  Thermal eq.  Hard π/2 pulse Precess in xy 
          with Δω 
 
When viewed “from above”, the spin moves in a 
circle in the xy (transverse) plane: 
 
 
 
 
 
 
 
 
 
The more we wait, the larger θ becomes:  
 

θ(t) = Δω × t. 
 
Different chemical species will precess at different 
angular velocities because of their different offsets, 
so after the same amount of time they’ll point in 
different directions: 
 
 
 
 
 
 
 
 
 After excitation 
 water (light blue) 
 fat (dark blue) 

 
2.2 UUThermal Effects 

 
The thermal effects will eventually cause the spin 
to return to thermal equilibrium along the z-axis. 
This usually takes ~100 ms to ~ 1 sec. We will 
discuss them and their origins next lecture. 
 
2.3 UUHard π-Pulses 

 
Once in the plane, there is no rule forbidding us 
from applying additional pulses! For example, we 
can apply an RF pulse along the x-axis for long 
enough to induce a π rotation. We make it strong 
enough to be “hard” – that is, to render the offset 
insignificant: 
 
 
 
 
 
 
 
 
 (a.) Thermal eq.    (b.) Excite   
 
 
 
 
 
 
 
 
 
 (c.) Wait (precess)    (d.) π-pulse 
 
This pulse reflects the spin about the x-axis. Here’s  
what happens to the spin after it is excited by a 
hard (π/2)x pulse, left alone for a time T and then 
acted upon by a πy pulse: 
 
 
 
 
 
 
 
 
 
 

θ 

The phase
of the spin.



 
  
 
 
 
 
 
(a.) Spin is excited     (b.) After time T 
 
 
 
 
 
 
 
 
(c.) After hard πy pulse   (d.) After time T 
 
So the spin returns to its original position. This is 
why π pulses are sometimes said to “reverse time”. 
 
 
2.4 UUComplex Numbers: a Refresher 

 
It is sometimes useful to switch to complex 
notation (complex as in “incorporating the 
imaginary number i”). Recall that i is defined via 
 

2 1i = −  
 
Complex numbers are entities of the form a+ib, 
where a & b are “regular” numbers.  Complex 
numbers are usually denoted by the letter z. For 
example: 
 
 z=4+i5 
 z=-5+iπ 
 
The trick about complex numbers is to treat them 
precisely the same way you’d treat regular 
numbers, by treating i as a variable (just think of it 
as x) with the special property i2=-1. For example, 
addition & multiplication: 
 
 z1=3 + i4, z2=-2 + i6 
 z1+z2 = 3 + i4 – 2 -6i  = 1 +i(4-6) = 1-2i 
 z1z2 = (3 + i4)(-2+i6) 
  = 3×(-2)  + 3×i6  + i4×(-2)  + i4×i6 
  = -6  +18i - 8i   +24i2 
  = -6  +18i -8i   -24 

  = -30 + 10i 
 
a & b are called the real and imaginary parts of the 
complex number, respectively: 
 

N N
real imaginary
4 8z i= +  

 
Some other things you should know about 
complex numbers: 

1. It doesn’t matter whether you write 8i or 
i8. Remember: think of i as a variable, x. 
Does it matter if you write 8x or x8? 
They both mean 8 times x. 

2. z =0 can only hold if both its real and 
imaginary parts equal 0. For example, 
suppose someone tells you z= x + i(y-4), 
and that z=0. Then x=0 and y=4. 

 
One very important identity that ties in a lot of 
different ideas in mathematics is Euler’s identity: 
 

( ) ( )cos sinixe x i x= +  
 
It’s very surprising the first time you see it, since it 
relates two completely different ideas (e and 
trigonometry). To prove it we need calculus, and 
we won’t be doing it in this course, so you’ll have 
to take my word for it. Because e is an exponent 
we can use the familiar exponent identities: 
 

( )
a b a b

ba ab

e e e

e e

+=

=
 

 
These identities hold for any numbers, not just e 
(for example: 2 3 2 3 532 4 8 2 2 2 2+= × = × = = ). 
They also hold for any a & b, even if they are 
complex numbers! For example: 
 

( )ix iy ix iy i x ye e e e+ += =  
 
As a fun example3, you’ll be using this in the HW 
to prove a trigonometric identity. 
 Complex numbers can be viewed as vectors in 
the real-imaginary plane, which is just like the xy-

                                                           
3 This is fun. Trust me. 
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plane. If z=a+ib, then a is its “x-coordinate” and b 
is its “y-coordinate”: 
 
     Imaginary 
          z=a+ib 
 
          b 
            Real 
        a 
 
  
 
Once we start to think about complex numbers as 
vectors, we can start asking vector-related 
questions: 

1. What is the complex number’s size (also 
known as its “magnitude”)? 

2. What is the angle it makes with the x-
axis? This angle is known as the complex 
number’s phase. 

We can use basic trigonometry & Pythagoras’s  
theorem to answer these questions: 
 
  Imaginary 
       axis 
       
      b    
        real 
     a     axis 
 
 
 
 
 
 
 
 
 
Note that we can completely specify this complex 
“vector” (number) in two equivalent ways: 

1. Specify its real, a, & imaginary, b, parts. 
2. Specify its magnitude, |z|, and phase, φ.  

 
2.5 UUComplex Magnetization 

 
A magnetization vector has three components, Mx, 
My, Mz. Once tilted onto the xy plane (along the 
x-axis) it will precess. During this precession, Mz 
will remain constant and Mx and My change 
according to 
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So as long as no RF fields are involved, Mz remains 
constant and only Mx, My change. Instead of 
dealing with Mx and My separately, it’s convenient  
to think of the magnetization in the xy-plane as a 
complex number Mxy. 
 
 
 
 
 
 
 
 
 
 
   
 
The good thing about the complex representation 
is that we can use Euler’s identity to go from the 
cartesian to the polar representation: 
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0
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This representation has no conceptual advantage 
over the use of vectors, but it does make a lot of 
calculations much easier. Mxy – whether in vector 
or complex form - is called the transverse 
magnetization. Whenever presented with a 
complex transverse magnetization, you can easily 
recover the x & y components of the 
magnetization vector by taking the real and 
imaginary parts of Mxy, respectively. For example, 
given 0( ) i t

xyM t M e ω−= , you would use Euler’s 

identity and identity Mx and My as follows: 
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3. Signal Acquisition 

 
3.1 UUThe Physics 

 
We’ve gathered so far that: 

1. The spins align along the main B0 field 
at equilibrium. 

2. We can excite them onto the xy-plane. 
3. When left alone, they precess about B0 

with an angular velocity ωΔ , called 
their offset, which depends on their 
chemical shift and the angular frequency 
at which our rotating frame rotates. 

All these manipulations are for naught if we can’t 
observe the spins. To this end, the MRI and NMR 
machines have coils, called receiver coils, wound 
around the main bore of the magnet in a particular 
configuration, that can pick up the spins’ signals.  
 The physics involved is all contained in 
Faraday’s law. A quick explanation is in order. 
Imagine a conductor loop, placed in a magnetic 
field, and linked to a resistor.  
 
 
 
 
 
 
 
   Loop placed in a magnetic field 
   (the black arrows). 
 
As it is, no current will flow in the system and the 
resistor will remain cold to touch.  

The magnetic flux φm through the loop is 
defined as the magnetic field times the loop’s area. 
In our case, if the loop’s area is A and field is B, 
 

φm=AB. 
 
If we were to change the magnetic flux by 
changing the field B, we would induce a current in 
the system and heat the resistor up.  This would be 
as if we’ve replaced the coil with a battery, or 
voltage source (e.g. an electrical socket): 
 
 
 
 
 

 
 
 
 
 
 
 
This is the essence of Faraday’s law: 
 
 A changing magnetic flux φm through an area 
 enclosed by a loop of wire generates a voltage 
 in the loop. This voltage is proportional to the 
 flux’s rate of change: 
 

md
V

dt
φ

∝  

 
The idea of signal reception is this: 

1. The nuclear magnetic moments create 
magnetic fields. 

2. Rotating the moment also rotates the 
field, changing it with time. 

3. If we put a coil around the imaged 
subject, the changing magnetic field will 
create a changing flux through the coil. 

4. The changing flux will induce an 
observable voltage. 

This is precisely what’s done in MRI: the body is 
“wrapped” in a coil that picks up the voltage 
induced by the spins (often, the same coil is used 
to create the RF). 
 

Inside a Philips 3T Magnet 

 
 
 
  Gradient coils  Body receiver  Shim iron 
  (we’ll get to those)           coil               (not yet 
           discussed) 
 



3.2 UUAn Expression for the Signal 

 
The above qualitative discussion can be given a 
quantitative formulation. The exact mathematics 
are a bit too advanced for this course, so I’ll try to 
hand-wave my way through. 

Imagine we have a single spin precessing in the 
xy-plane: 
 

0
i t

xym m e ω−=  

 
For a single spin ½, you’d substitute 1

0 2m γ= = .  
A spin is nothing more than a magnetic moment, 
and magnetic moments generate magnetic fields. 
The precise form of the field is complicated, but 
we can say one thing: because the spin rotates 
periodically, so should the field it creates4: 
 

0
i tB m e ω−∝  

 
The magnetic flux will somehow be proportional 
to it: 
 

0
i t

m B m e ωφ −∝ ∝  
 

and the observed voltage will be: 
 

0~ ~ i tmd
V m e

dt
ωφ

ω −  

 
This expression for V is complex. In almost all 
modern MRI machines, two coils are used to pick 
up data – this is called quadrature detection. One 
coil picks up a signal proportional to the real part 
of the magnetization (which is just Mx), and the 
other coil picks up a signal proportional to its 
imaginary part (which is just My).  
 For multiple spins, you’d just have to sum the 
contributions from the different spins: 
 

                                                           
4 This is actually not a trivial assumption, and has 
to do with the long wavelengths involved. This 
wouldn’t work so well with short wavelengths. 
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It doesn’t matter where the spin is, just what its 
Larmor precession is. In general, if we have some 
bulk magnetization M(r) (magnetic moment per 
unit volume at point r), we can divide the object 
inside the coil – say, the human patient – in small 
volumes ΔV and sum over all the volumes: 
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When the volume elements become very small, 
this turns into an integration: 
 

( ) ( ) ( )( ) i ts t M e dωω∝ ∫ rr r r  

 
It’s important to note that all this discussion was 
not carried out in the rotating frame but rather in 
the lab frame, so, for example, ~ 136 MHzω on a 
3T imaging machine. What can cause ω(r) to vary 
from point to point? 

1. Magnet imperfections. Usually small 
variations, on the order of 1-100 Hz. 

2. Field gradients that we create – important 
for imaging, but still small compared to 

0 0Bω γ=  (they’re on the order of 0-100 
kHz). 

 Variations in ω(r) are therefore small, so it’s 
approximately constant, ( ) 0 0Bω ω γ≈ =r , and it 
can be taken out of the integral:  
 

Imaged 
object 

M(ri) 

ΔV

ri



( ) ( )( ) i t
Ls t M e dωω∝ ∫ rr r  

 

This cannot be said of ( )i te ω r , because even if 
variations in ω are small, for long enough times 
they can become significant, so we’ll have to leave 
it as-is.  



4. NMR Spectroscopy 

 

While this is a course about NMR imaging, I’d like 
to describe the fundamental experiment at the 
basis of NMR spectroscopy for three reasons: 

1. It’ll put to good use most of the concepts 
we’ve learned so far. 

2. It will introduce the idea of a pulse 
sequence. 

3. We’ll revisit it when we talk about 
spectroscopic imaging (should time 
allow). 

 
Suppose you have a sample with water, and it has 
some offset Δω in the rotating frame. You first 
excite the water and then let it precess – it will 
precess with the angular velocity Δω in the 
rotating frame. This rotation will induce a voltage 
in a coil placed around it (in fact, the same RF coil 
used to excite it can also be used to measure this 
voltage, but you can use a different coil as well). 
The periodic circular precession will induce a 
periodic, sinusoidal voltage in the coil: 
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            Time 
 
     ~Sin(Δω×t) 
 
 
 
By observing this signal you can deduce the offset, 
Δω. Why is this important? Well, think about a 
sample containing, say, two substances – say, fat 
and water – having different offsets, Δω, owing to 
their different chemical structures. Each would 
give rise to its own signal with its own periodicity: 
    

 
 
 
 
 
 
 
 
 
 
 
    Water ~ sin(Δωwatert) 
 
            time 
 
 
 
 
    Fat ~ sin(Δωfatt) 
 
             

time 
 
 

 
 
The signal we pick up would be the sum of signals 
coming from each spin species: 
 

Signal ~ S1sin(Δωfatt) + S2sin(Δωwatert) 
 

 
 
 
There are post-processing ways for: 

1. Uncovering Δωwater and Δωfat from the 
total signal.  

2. Finding their relative amplitudes (in the 
above example, the fat (orange) signal 
was about half the water (blue) signal, 
indicating in a sense there are less fat 
molecules in the sample than water 
molecules). 

 



That’s the idea of NMR spectroscopy: you’re given 
a sample with different chemical compounds and 
you’re asked to: 

1. Say which compounds there are. 
2. Say how much of each compound there 

is. 
 
The most famous post-processing method is called 
the Fourier transform. We’ll study it in detail in at 
later date. Now I’d just like to mention that it can 
decompose a sum of sinuses into “peaks”. For the 
simplified fat+water example I gave above, this 
Fourier transform – which you can view as a 
“black box” – would yield a spectrum: 
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