MRI Primer, Exercise #6
Due 12/Jan/2009

Real-life Gradients. So far we've used idealized, rectangular gradient waveforms in our

discussions. In reality, turning on a gradient rapidly induces secondary currents in the MRI

hardware, which may interfere with its operation; therefore, gradients must not be turned on
faster than a specified rate, called the slew rate of the machine. It is given in

Tesla/meter/second.

a. Imagine a gradient turned on for a short period of time, At, at maximal slew rate, and
then turned off before it reaches the maximal value allowed by the machine (about 40
mT/meter on the 3T Siemens, as an example). Calculate Ak for this case, assuming:

i. The slew rate is known (denote it by SR).
ii. At is short enough for the gradient not to reach its maximal value and
plateau (making the waveform look like a triangle).
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Hint: the answer is much shorter than the question.

b. In the Siemens 3T machine we have, the slew rate is 200 Tesla/meters/seconds. The
maximal gradient is 40 milli-Tesla/meter. Given a blipped EPI sequence, what is the
minimal possible At, (along the blipped k,-axis), given that the size of the imaged object
along the y-axis is 30 cm?
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c. Given Aty calculated in (b), and that you're trying to image an object of size 30cm along
the y-axis, what is the average G, gradient used?



2. EPI Resolution. Let’s try and estimate that resolution using real-life parameters, and also use
the results of question #1 in the process. Assume the object is 2D and rectangular, having
dimensions 30cm x 30cm (this is approximately the size of an axial slice of the brain). Take
Aty = 100 psec, Ty = 0.5 milliseconds. Take the total acquisition time to be equal to about
50ms (the order of magnitude of T, for a “typical” tissue, say muscle or kidney, at 3T).
Assume ideal gradients (no need to take into account the slew rate). The maximal gradient
strengths are 40 milli-Tesla/meter along each axis. Calculate:

a. The number of voxels (i.e. the “resolution”) along the x & y directions. Assume that we
demand equal resolution along both axes (same number of voxels).
b. The size of the x & y gradients.

3. Composite Pulses. A frequent problem in many imaging machines is an inhomogeneous RF
transmitter. This means that, while you choose a particular RF power for your irradiation,
different regions in the sample will get tipped by different angles. For example, when exciting
the spins using a 90 hard-pulse, according to yBreT=1/2, some spins might get tipped by 85
degrees, while others by 92 or 94. One way to circumvent this is to string-together smaller-
angle pulses with differing phases. These are called composite pulses. In this question we’ll

look at a composite 7 pulse.

a. Starting from thermal equilibrium, and using a 7., pulse, draw the trajectory and final
state of the magnetization assuming an ideal RF transmitter.

b. Repeat (a), now assuming a non-ideal RF transmitter, i.e., that the flip angle is — say —
170 degrees.

c. Next, consider the sequence of pulses: 90., -180.-90.,. Once again starting from thermal
equilibrium, draw the trajectory and final state of the magnetization assuming an ideal
RF transmitter.

d. Repeat (c), only this time assume a non-ideal RF transmitter, e.g.: 85, -180.-85,.
Explain why this sequence is better (i.e., gets you closer to the —z axis) when compared
to (b), and how the 180, pulse' in the middle helps correct for the imperfections of the
two 85, pulses.

Note: this is basically a “proof-by-drawing” exercise, since we won’t be getting into the

mathematics of composite pulses in this course. Feel free to exaggerate angles somewhat to

get the point across.

! We should’ve assumed the 180, is non-ideal as well, but it is possible to show (we won’t) that this non-ideality
is negligible (“of 2™ order”, as a mathematician might say) compared to that of the two 85., pulses. You can
also hand-wave this with pictures.



