1. Real-life Gradients. So far we've used idealized, rectangular gradient waveforms in our discussions. In reality, turning on a gradient rapidly induces secondary currents in the MRI hardware, which may interfere with its operation; therefore, gradients must not be turned on faster than a specified rate, called the slew rate of the machine. It is given in Tesla/meter/second.
a. Imagine a gradient turned on for a short period of time, $\Delta \mathrm{t}$, at maximal slew rate, and then turned off before it reaches the maximal value allowed by the machine (about 40 $\mathrm{mT} /$ meter on the 3 T Siemens, as an example). Calculate $\Delta \mathrm{k}$ for this case, assuming:
i. The slew rate is known (denote it by SR).
ii. Δt is short enough for the gradient not to reach its maximal value and plateau (making the waveform look like a triangle).

Hint: the answer is much shorter than the question.
b. In the Siemens 3 T machine we have, the slew rate is $200 \mathrm{Tesla} / \mathrm{meter} /$ seconds. The maximal gradient is 40 milli-Tesla/meter. Given a blipped EPI sequence, what is the minimal possible $\Delta \mathrm{t}_{\mathrm{y}}$ (along the blipped k_{y}-axis), given that the size of the imaged object along the y -axis is 30 cm ?

c. Given $\Delta \mathrm{t}_{\mathrm{y}}$ calculated in (b), and that you're trying to image an object of size 30 cm along the y -axis, what is the average G_{y} gradient used?
2. EPI Resolution. Let's try and estimate that resolution using real-life parameters, and also use the results of question $\# 1$ in the process. Assume the object is 2D and rectangular, having dimensions $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ (this is approximately the size of an axial slice of the brain). Take $\Delta t_{y}=100 \mu \mathrm{sec}, \mathrm{T}_{\mathrm{x}}=0.5$ milliseconds. Take the total acquisition time to be equal to about 50 ms (the order of magnitude of T_{2} for a "typical" tissue, say muscle or kidney, at 3 T). Assume ideal gradients (no need to take into account the slew rate). The maximal gradient strengths are 40 milli-Tesla/meter along each axis. Calculate:
a. The number of voxels (i.e. the "resolution") along the $\mathrm{x} \& \mathrm{y}$ directions. Assume that we demand equal resolution along both axes (same number of voxels).
b. The size of the $\mathrm{x} \& \mathrm{y}$ gradients.
3. Composite Pulses. A frequent problem in many imaging machines is an inhomogeneous RF transmitter. This means that, while you choose a particular RF power for your irradiation, different regions in the sample will get tipped by different angles. For example, when exciting the spins using a 90 hard-pulse, according to $\gamma \mathrm{B}_{\mathrm{RF}} \mathrm{T}=\pi / 2$, some spins might get tipped by 85 degrees, while others by 92 or 94 . One way to circumvent this is to string-together smallerangle pulses with differing phases. These are called composite pulses. In this question we'll look at a composite π pulse.
a. Starting from thermal equilibrium, and using a $\pi_{\text {-y }}$ pulse, draw the trajectory and final state of the magnetization assuming an ideal RF transmitter.
b. Repeat (a), now assuming a non-ideal RF transmitter, i.e., that the flip angle is - say 170 degrees.
c. Next, consider the sequence of pulses: $90_{-y}-180_{-x}-90_{-y}$. Once again starting from thermal equilibrium, draw the trajectory and final state of the magnetization assuming an ideal RF transmitter.
d. Repeat (c), only this time assume a non-ideal RF transmitter, e.g.: $85_{-y}-180_{-x}-85_{-y}$. Explain why this sequence is better (i.e., gets you closer to the -z axis) when compared to (b), and how the $180-\mathrm{x}$ pulse ${ }^{1}$ in the middle helps correct for the imperfections of the two 85 -y pulses.
Note: this is basically a "proof-by-drawing" exercise, since we won't be getting into the mathematics of composite pulses in this course. Feel free to exaggerate angles somewhat to get the point across.

[^0]
[^0]: ${ }^{1}$ We should've assumed the 180_{x} is non-ideal as well, but it is possible to show (we won't) that this non-ideality is negligible ("of $2^{\text {nd }}$ order", as a mathematician might say) compared to that of the two $85_{\text {-y }}$ pulses. You can also hand-wave this with pictures.

