MRI Primer, Exercise #3 Due 15/Dec/2009

- 1. "Hard" Pulses. An RF pulse is said to be "hard" if one can neglect the offset when computing its effects; in other words, when the offset is negligible compared to the applied RF field. Thus, <u>during a hard pulse</u>, <u>all spins are assumed to be on-resonance</u>. Suppose you have a bunch of proton spins with different chemical shifts, having different offsets in the rotating frame, ranging from +100 Hertz to -100 Hertz. You wish, to a good <u>approximation</u>, to excite all those spins from thermal equilibrium along the z-axis onto the x-axis using a 90-y RF pulse. Give a condition on the pulse's duration for it to be considered hard (i.e. the duration must be must longer than ... or much shorter than ... something). Hint: the answer is short.
- 2. Precession + Relaxation. The Bloch equations are:

$$\begin{cases} \frac{dM_x}{dt} = \gamma M_y B_z - \gamma M_z B_y - \frac{M_x}{T_2} \\ \frac{dM_y}{dt} = \gamma M_z B_x - \gamma M_x B_z - \frac{M_y}{T_2} \\ \frac{dM_z}{dt} = \gamma M_x B_y - \gamma M_y B_x - \frac{M_z - M_0}{T_1} \end{cases}$$

a. Show that, if the initial magnetization is $M_i=(M_a,0,M_b)$, no RF is present, and the offset is ΔB , the solution to the equations (and hence the magnetization, as a function of time) is given by:

$$\mathbf{M}(t) = \begin{pmatrix} M_a \cos(\Delta \omega t) e^{-t/T_2} \\ -M_a \sin(\Delta \omega t) e^{-t/T_2} \\ M_0 \left[1 - e^{-t/T_1} \right] + M_b e^{-t/T_1} \end{cases}$$

where $\Delta \omega = \gamma \Delta B$. Hint: there really isn't too much to think about. Just (i.) make sure $M(t=0) = M_i$ and (ii.) differentiate the components of M(t) and make sure each satisfies the appropriate differential equation (there's some dirty work involved).

b. Show that, using complex notation, $M_{xy}(t)=M_ae^{-i\Delta\omega_{t-t}/T^2}$ (recall $M_{xy}(t)=M_x(t)+iM_y(t)$). Once again, this is just a bit of dirty work (use Euler's identity, $e^{ix} = \cos(x) + i\sin(x)$). We'll be using this result in class.

3. Analyzing a Pulse Sequence. A pulse sequence is just a succession of RF pulses with delays between them. Suppose you're given a spin with an offset of 1 kHz (this is without the 2π !), and suppose the RF pulses shown below are hard, meaning they are strong enough for you to neglect the spin's offset during each RF pulse (but not in-between pulses!). What will the magnetization vector be at the end of the sequence, assuming you start out from thermal equilibrium, $M=(0,0,M_0)$? Justify your answer by writing down M in the 2 intermediate steps along the way marked by (A), just before the 180_y, and (B), just before 90_y.

Neglect relaxation effects (why is this is an acceptable approximation? Hint: take a look at the table of T_2 and T_1 values in question #5, exercise #2).

Remember: "hard" pulses are short, strong RF pulses, which render the offset negligible throughout their duration.

- 4. The Fourier Transform. In this question we're going to practice computing the Fourier Transform (FT).
 - a. Derive the identities:

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}, \qquad \cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

Hint: use Euler's identity, $e^{ix} = \cos(x) + i\sin(x)$.

b. Compute the 2D FT, $\hat{f}(k_x, k_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i(k_x x + k_y y)} dx dy$, of the following function, and show that it's real (use the results of part (a)):

$$f(x, y) = \begin{cases} 1 & -a \le x \le a \text{ and } -a \le y \le a \\ 0 & \text{otherwise} \end{cases}$$