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Chemical exchange has surprising ties with 
relaxation as we shall see. Understanding exchange 
lets us understand phenomena, some of which at 
first glance seems totally unrelated: 
 Why do some peaks disappear when certain 

solvents are used? 
 How is T2 related to the fluctuating fields? 
 Why don't we see any effect of the electron 

spin on the nuclear spectrum (in diamagnetic 
samples)? 

 Why and when does motional narrowing 
occur? 

At the heart of exchange phenomena lies a very 
simple model: as a spin "jumps" from one 
molecule to the next, it retains its magnetization, 
but its precession frequency changes. Thus, we can 
model chemical exchange as a single spin with a 
time varying  resonant frequency, (t).  
 
1. A Toy Model 

 
1.1 Random Walks 

 
Imagine a drunk person starting at x=0 and taking 
a step of size d either left or right with equal 
probability in each time unit. We call this a 
random walk. If we plot the position of an 
ensemble of, say, 5 drunkards as a function of time 
(number of steps, to be precise) for 50 steps, we’ll 
get something that looks like this: 
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We see that while averaged over all drunks the 
distance from the origin is 0 (as expected from an 
equal-probability walk), the drunks seem to be 
getting farther from the origin. In fact, the average 
absolute distance from the origin (the root mean 
square, to be exact) is 
 

rmsx d N  . 
 

If the time between steps is , then, after a time t, 
during which we have taken N=t/ steps, the 
drunks’ average RMS is 
 

  2d
rmsx t d N t   . 

 
in the limit 0 and d0 (with 2d

  constant) we 
get a classical diffusion problem which can be used 
to accurately describe the diffusion of, say, 
molecules in water. The quantity 
 

2

2
dD   

 
is called the diffusion coefficient (for water 
molecules in a glass of water, it is about 2 
m2/ms), and we can write 
 

  2rmsx t Dt  . 
 

This can be used to measure microscopic 
properties of molecular collisions simply by 
looking at their diffusion coefficients (something 
we won’t be doing here). 
 When looking at a large number of drunkards 
it makes sense to discuss the probability of finding 
a drunk or the spatial distribution of drunks. If all 
the drunkards begin at the origin (x=0), then this 
distribution will look like this: 
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What would happen if we put the drunkards on a 
circle and have them all start out from =0? Then 
they would diffuse in a similar manner, until 
eventually their density becomes constant all along 
the circle (the red circles show schematically the 
positions of the drunks at time t=1): 
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How long will it take for the drunks to fan out 
completely across the circle? Here, 
 

   2

22 ,rms t Dt D

     

 
where  is the angular step size in each step. The 
drunks will “fan out” when  
 

   
2 22 2

2 2~ 2rms Dt
 

       . 

 
 
1.2 Exchange is a Random Walk 

 
We begin by analyzing the simple pulse-acquire 
1D experiment in the presence of chemical 
exchange. As a proton, X, "hops" between different 
chemical sites, its resonant frequency changes. If 

the hopping is much slower than T2 then the 
proton will precess with a well defined frequency 
throughout the experiment.  

With frequency jumps on the timescales of T2 
or faster, the proton will change its precession 
frequency throughout the evolution. Suppose, for 
simplicity, only 2 frequencies exist, A and B, that 
all other properties (T1, T2) are equal between the 
two sites, and that the spin "hops" back and forth 
between the two frequencies at a time scale ex. 
This problem is easiest to analyze in a rotating 
frame in which the frequencies are symmetrical 
about zero: 

 
 

 
 
 
 
 
 
where =B-A.  Considering the evolution of a 
spin in the transverse plane, starting out from the 
x-axis. At any given time it will precess with one of 
two possible frequencies, /2, stochastically 
alternating between them roughly every ex 
seconds. Thus, it will accumulate a phase, (t), in 
analogy to a "drunk" executing a random walk: 
 
 
 
 
 
 
 
 
 
 
 
 
The hopping of the spin between two sites can be 
described by a simple first order chemical exchange 
equation as is done in basic chemistry, with a rate 
constant k in Hz (k is the number of time the spin 
hops from A to B or from B to A in a second, 
assuming both transitions are equal). The time ex 
is the inverse of the rate constant:  
 

1
ex k
  . 

A B -/2 /2

Move to rotating frame 
rotating at the middle 
frequency, (A+B)/2 

As time advances 
the spins "fan out" 
about 0 due to their 
diffusion like time 
evolution. 



 
We now examine two limits: "fast" and "slow" 
exchange. 
 
1.2 Fast Exchange (ex<<-1

) 

 
In this limit the spin precesses by a small amount 
before jumping (since ex<<1). In this limit of  
small time steps, the spin's motion can be modeled 
as a circular diffusion process with diffusion 
coefficient D=()2/(2ex), where  is the typical 
phase the spin accumulates before flipping its 
precession direction. Since ~2ex, we have 
D=()2/(2ex)=(2)22ex/2. The average 
"distance" (in phase) the spin accumulates after a 
time t is then given by 
 

   2
~ 2 2rms ext Dt t         

 
This is precisely what’s described in the circular 
diffusion of drunkards in the previous section. A 
large number of spins executing this diffusion very 
rapidly will eventually “fan out” over the entire xy-
plane, and their vector sum will add up to 0. This 
happens at a time  2 2rms t    , or (solving 

for t2): 
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At this point the spins will go out of phase and our 
signal will decay to about 0: 
 
 
 
 
 
 
 
 
 
 
So, if we measure our signal as a function of time, 
neglecting T2 relaxation, it will still decay due to 
this diffusion process: 
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The resulting lineshape will have a width ~ 21/ t   
(up to some constant factor). Thus we obtain the 
following two insights: 
 On average, the spins will remain at =0, 

leading to an apparent frequency of zero and a 
single line at =0, while "fanning out" and go 
out of phase. 

 Neglecting T2 relaxation, the width of the 
peak will be given by t2

-1=2ex (in the 
absence of other relaxation mechanisms). As 
the hopping becomes more frequent, ex0, 
the linewidth will become narrower. This is 
sometimes termed motional narrowing.  

Motional narrowing associated with exchange of 
course can't make our lines infinitely narrow. At 
some point as ex0 we're going to hit a "brick 
wall" because of the microscopic T2 processes 
occurring at each site, a limit known as, the very 
fast exchange limit. What will our "ultimate 
linewidth" become? If we assume two sites,  
 

12

21

k

k
1 2 , 

 
then the spins' relative populations will be 
p1=k21/(k12+k21) in site 1 and p2=k12/(k12+k21) in 
site 2. Hence its transverse relaxation will be the 
average of both,    site  1 site 2

2 1 2 2 2R p R p R  . This 
will be the "intrinsic" linewidth in the limit of 
extremely fast exchange, when motional narrowing 
becomes negligible. Our effective T2 that will 
determine our line’s width will be: 
 

         21 2 1 2
1 2 1 2

22 2 2 2 2

1 1
exeff

p p p p

tT T T T T

        . 

 

In this plot, I’ve 
simulated 10,000 
spins and added 
up their signals, 
using: 
 T1,T2= 
 =50 Hz 
 ex=0.01 sec 
 t2=1.57 sec 



1.3 Slow Exchange (ex>>-1
) 

 
When the spins precess >> 2 before hopping to a 
different frequency - that is, when ex>>2 - a 
different situation emerges. Imagine for a moment 
that all spins begin at frequency A; that is, at -
/2. They will all precess coherently as a unit 
and, around ex, jump over to +/2. However, by 
the time they jump, their relative phases will be 
completely non-coherent since the can be 
anywhere in the transverse plane when the jump 
will occur. Even when they hop back to -/2, they 
will still be out of phase. This means that the entire 
signal will decay after about a time ex and never 
return. Thus we can summarize: 
 We will see the spins precess at -/2. 
 After ex the signal will decay to zero, leading a 

linewidth of ~ 1/ex. 
Thus we will observe a single line at -/2 with 
linewidth 1/ex (neglect once again all other 
relaxation mechanisms). Of course, we have an 
equal population starting out at +/2 and 
decaying the same way, so overall we will end up 
seeing two distinct lines at /2 with linewidths 
governed by 1/ex. 

  

 
 
If we now add T2 relaxation then our linewidth 
becomes: 
 

2 2

1 1 1
eff

exT T 
  . 

 

Accumulated phase  time before jump 

0 2 4 6 8 10 12 14 16

Slower Faster
Exchange Rate, k [in sec-1] 

T1
-1 

Very Fast 
Exchange: Single 
sharp peak, with 

width ~ 
p1R2

(1)+p2R2
(2)

.  

Slow Exchange: Two 
wide peaks, with 

width ~ 1/T2 + 1/ex. 

Exchange has 
no effect 

Fast Exchange: 
Single broad 

peak, with width 
~ 2ex.  

Summary: Exchange between two equally populated sites with equal bidirectional rate constants 



1.4 Unequal Size Peaks 

 
So far we've assumed the two pools of spins have 
equal concentrations and rate constants. It makes 
absolutely no difference if the magnetization of (A) 
and (B) differ initially (for example, if one peak is 
intense and the other isn't): each peak can be 
thought of independently. As spins starting out at 
(A) hop to (B) and back to (A) and so forth, they 
will perform the same kind of diffusion processes 
described above.  
 What do matter are the rate constants and the 
concentrations. The concentration has two effects. 
Think of a dilute solute in a solvent. The high 
solvent concentration will lead to a large solvent 
peak, which we just argued is meaningless. 
However, the low solute concentration means that 
once a proton jumps from the solute to the 
solvent, it's probably not going to see another 
solute molecule before decaying back to thermal 
equilibrium, meaning the effective rate constant 
from solvent to solute is almost zero. The effective 

rates k12, k21 in the  AB

BA

k

k
A B  system are 

therefore proportional to not just the true rates, 
but also to the corresponding fractional 
concentrations: 
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This brings us to the problem of uneven rate 
constants. These effects can be incorporated into 
our toy model by assuming the time a spin spends 
at a site is proportional 1/(rate constant). We will 
not repeat the math, and merely quote the 
changes: 
1. In the fast exchange limit, the coalesced peak 

will resonate at the average frequency 
pAA+pBB, and have an average linewidth 
given by pAR2

(A)+pBR2
(B), where now  

 
 
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 
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AB B BA AAB BA

BA BA A
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k k C
p

k C k Ck k
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p

k C k Ck k
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2. In the slow exchange limit, the peaks will 
resonate at their respective frequencies. 
Broadening will occur as before, since in the 
slow exchange case once a spin "hops" it loses 
its phase coherence irrespective of the size of 
the pool it hops to. Thus, the exchange 
broadening will be ~ 1/ex as before, and will 
be appreciable only if it is wider than T2 for 
both sites. That is, the linewidth will be given 
by ~ 1/T2 + 1/ex. Since the exchange rate 
AB and BA are different, we should write 
that the broadening for each site should be: 
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Of course one could have a "fast" coefficient in 
one direction and a "slow" one in the other 
direction. What do you think would happen then? 
 
1.5 Modified Bloch Equations  

 
Exchange can be described by incorporating 
exchange terms in the Bloch equation. We are 
aided by the fact that when a nucleus “jumps” to 
another molecule, it retains its magnetization. 
 A simple first order exchange system is: 
 

   

   

eff eff

eff eff

AB BA

AB BA

dA
k A k B

dt
dB

k A k B
dt

  

 
 

 
If we have two magnetic sites without exchange, 
each would simply evolve with its own Bloch 
equation: 
 

     

     

relax

relax
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BB

d
t

dt
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t
dt




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M
M B
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Adding exchange now is a simple matter of adding 
the relevant exchange terms, since the two 
phenomena (Larmor precession and exchange) do 
not interfere with each other (i.e. there is no 
“cross-talk” term to worry about): 
 



         

         

eff eff

eff eff

relax
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AB A BA B

d
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dt
d
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dt
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We will not solve these equations here since we’ve 
already obtained useful insight by considering a 
toy model, but the above equations provide a more 
rigorous framework for treating exchange for those 
interested. 
 
 
2. Understanding Exchange 

Phenomena 
 
2.1 Solvent Exchange 

  
Some NMR peaks tend to disappear depending on 
the solvent used. For example, hydrogens in OH 
and NH bonds tend to exchange with hydrogens 
in water. The following data refer to some amino 
acids at a pH of 7.0 and a temperature of 37 C: 

  
 Tyrosine OH  5-15 kHz 
 Arginine NH  1.2 kHz 
 Arginine NH2  0.7 kHz 
 Histidine NH  1.7 kHz 
  
Water resonates at 4.7 ppm, while the phenolic 
OH protons of Tyrosine resonate much higher at 
around 9 ppm: 
 

 
 
At 500 MHz, the difference between the two is 
about 2 kHz, implying the exchange is fast. Thus, 
if put in H2O the OH and H2O peaks will coalesce 
into one peak. Since H2O is so much more 
abundant, the coalesced peak will appear pretty 
much at 4.7 ppm, meaning the OH will 
"disappear" and only the water will show up. 
 
 

 

 

2.2 D/H Structural Information 

 
A nifty experiment called the "D2O shake" goes 
like this: first, run an experiment in a regular, non-
exchanging solvent such as CDCl3. Add a drop of 
D2O, shake, and let the D2O molecules separate 
and form their own phase at the top outside the 
receiver coil. What will happen is that all of the 
OH molecules will exchange with the D2O and 
then coalesce outside the sample, in effect 
identifying all OH (and other quickly exchanging) 
resonances. The following example shows menthol 
with (top) and without (bottom) the extra D2O: 

 

 
 
 
If the exchange is very slow, the exchange rates can 
be quantified by recording a series of 1D spectra 
and fitting the peaks with a decaying exponential 
as a function of time over several 
seconds/minutes/hours. For example, when 
studying proteins in H2O, some D2O can be 
added to test tube. The amide (NH) protons in the 
protein's backbone will then exchange with the 
D2O and their magnitude as a function of time 
will yield their exchange constants. This also lets 
one obtain crude information about protein 
structure, since amide protons which are closed off 
from the solvent due to the protein's folding will 
not exchange or exchange very slowly. Sometimes 
2D HSQC and not 1D spectra are recorded, in 
which case the exchange must be very, very slow 
(slower than the time it takes to run a 2D 
experiment) for us to use this method. 
 
2.3 Molecular Internal Rotations 

 
Let's look at a simple molecule, N,N-
dimethylformamide, at room temperature. The 
molecule displays a resonance by the electron 
shared between the NCO group: 



 

 
 
There is no internal rotation of the molecule at 
room temperature, since molecules don't tend to 
internally rotate about double bonds, or do so very 
slowly. Each of the methyl groups appears at a 
distinct resonance in the 1H NMR spectrum. As 
temperature is increased, however, the two methyls 
rotate about the C=N bond faster and faster, and 
at 130 C the two methyl resonance coalesce into a 
single line.  
 
 
2.4 Decoupling 

 
Even decoupling can be (partially) understood in 
terms of an exchange. As we irradiate the carbon in 
a C-H pair, we're rotating C and changing the 
field H feels. Here, H "jumps" from one frequency 
(+J/2) when C points in one direction, to another 
(-J/2) when C points in a different direction. 
Think of the Hamiltonian of a two-spin system: 
 

1 1 2 2 1 22z z z zH I I JI I     . 
 

If we think of I1z semiclassically as a “coefficient” 
of I2z and modulate it as a function of time, it is 
similar to the chemical exchange problem. If we 
pulse on the C at a rate -1>>J, we can average out 
the effects of J-coupling, where  is the spatial 
spacing between the -pulses.  
 An interesting application of this can be seen in 
methanol (CH3OH). In the presence of impurities 
or at 50C temperature, methanol contains two 
peaks: 
 

 
 

This is due to the H in the OH detaching and re-
attaching to the molecule. At low enough 
temperatures (-30C) or pure enough methanol 
samples, however, one observes: 
 

 
 
As one would expect, the H is split thrice into a 
quartet and the methyl (CH3) is split once by the 
OH due to J-coupling (they are an AX3) system. 
What is happening here? As the H in OH detaches 
and re-attaches fast enough, it "scrambles" the 
phase of the J evolution.  
 
2.5 Why Don't We See Non-

Isotropic Interactions in The 

Liquid State? 

 

Why are liquid state spectra so simple? Because 
many interactions get averaged out. This vague 
statement can now be made more exact: as the 
molecule changes its rotational state many non-
isotropic interactions will cause the nuclear spins' 
larmor frequency to change as a function of time. 
If the rotational correlation time, rot, is shorter 
than the range of frequencies of the interaction 
(i.e., the "size" of the interaction), then the 
interaction will get averaged out. 
 For example, consider dipolar coupling 
between two spins ~ 1 nm. The dipolar field of 
one spin at the position of the other is given by: 
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The interaction is maximal on the axis, where, for 
a proton magnetic moment, 
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3
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2

m

r



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This translates to a frequency shift of about B~1 
kHz for protons. Of course, since B~r-3, this can 
get much larger (~10 kHz) for closer proton spin 
pairs. The dipolar interaction will assume many 
values as the molecule rotates, but its magnitude 
will be insignificant when compared to the 
frequency at which the molecule rotates. The 
rotational correlation time for small molecules in 
liquids is about 1 ps in liquids, and its reciprocal is 
1012 Hz, much much larger than the dipolar 
interaction. We are thus in the "fast exchange" 
limit in which all possible frequencies coalesce into 
a single frequency, which we observe in liquid state 
NMR. 
 
2.6 A "Disordered Solid" 

 
A C60 molecule is a ball made out of 60 carbon 
atoms: 
 

 
 

These molecules, also called Buckminsterfullerene 
(after the inventor who built the first geodesic 
dome, which assumed a similar shape), have many 
interesting applications in chemistry. Solids of C60 
molecules can be created (this is a famous 1990 
Nature paper), in which the molecules assume a 
somewhat disordered close packing: 
 

 
Solid C60 at room temperature. 

 
 One can measure a 13C spectrum of these solids at 
different temperatures: 
 

 
From: Yannoni et. al. 

 J. Phys. Chem. 95:9-10 (1991) 
 

We see that at room temperature we get a sharp 
line, giving us a strong indication that the 
molecule is rotating isotropically and rapidly 
(faster than the solid state dipolar interactions and 
mostly the chemical shift anisotropy). As 
temperature drops the molecular rotational motion 
slows down and we start seeing solid effects of 
chemical shift anisotropy. 
 


