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1. Measuring T1 and T2 

 
1.1 T1 - Inversion Recovery 

 
To measure T1 of water, consider the following 
experiment: 
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Let’s go through what happens to the 
magnetization at each of the points outlined above. 
A.) The magnetization is at thermal equilibrium, 
B.) A hard -pulse is used to flip the magnetization 
onto the –z axis. 
C.) We wait a time TI. Longitudinal (T1) 
relaxation kicks into effect. 
D.) We excite the spin onto the xy-plane and 
measure. For the sake of simplicity, we can take 
the magnitude of the initial signal. 
 
 
 
 
 
 
 
 
 (A.) Thermal eq.     (B.) After -pulse 
 
 
 
 
 
 
 
 (C.) After time TI      (D.) Precession 
         (measure) 
 
 

The amount of decay depends on the time TI we’d 
wait. We can solve the Bloch equations: 
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To solve, substitute: 
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Substituting back Y in terms of Mz, we recover the 
solution: 
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This will determine the amplitude of the signal 
after waiting a time TI. We can imagine a set of 
experiments done with different TIs. In each 
experiment, the maximal value of the signal is 
taken: 
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Next, you can imagine taking the initial amplitude 
of each decay and graphing it. You will then be 
able to directly observe the decay of Mz and deduce 
T1: 
 
   initial signal 
 
 
              

  TI 
 
 
 

By fitting this decay curve to 
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you can find T1. This is called an inversion 
recovery (IR) experiment. 
 If our sample has multiple chemical shifts, a 
Fourier transform will yield a set of peaks, each 
recovering with its own unique T1 rate constant. 
 
1.2 An Energy Level Look At T1 

Relaxation 

 
The Bloch sphere picture can be eschewed in favor 
of a more energy-level-diagram look at relaxation. 
The spin-1/2 system we’ll be looking at has two 
possible states, “up” and “down”, reflecting its 
alignment or anti-alignment with respect to the 
main B0 field. Each level has a different energy 
which leads to a different Boltzmann distribution 

of spins. For example, if we had N spins, the “up” 
state would have slightly more than the “down” 
state: 
 

 
 
These diagrams represent the populations, or 
diagonal terms of the density matrix which we’ve 
seen. Upon any disturbance of the system out of 
equilibrium – say, by excitation – the system will 
re-align itself within a time ~ T1.  

 
 
1.3 T2 – Spin Echo Experiment 

 

Imagine having a sample with spins having 
different offsets due to a combination of chemical 
shifts and inhomogeneity of B0. Once you excite 
the spins from thermal equilibrium, they begin 
precessing at different rates, and eventually “spread 
out” in the xy-plane, due to both B0 
inhomogeneity and a spread in chemical shifts. 
This means that, if you were to acquire their 
signal, it would slowly die out because the spins 
would end up pointing in all sorts of directions 
and add up destructively (remember, the signal is a 
vector sum of the spins in the xy-plane): 
 
 
 
 
 
 
 
 
 
 
 
 
 
What would happen if we were to apply a 180 
pulse along, say, the x-axis, after a time T? The 
pulse would invert our spins: 
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 N/2+ 

N/2- 

Excite & measure 

Excite & measure 

Following excitation, all 
spins point in the same 
direction 

However, since each spin 
precesses at a different 
rate (= different colors), 
they end up dephasing 



 
 
 
 
 
 
 
 
 Before 180x pulse   After 180x pulse 
 
However, note the interesting part: if we were to 
wait an additional time T, the spins would end up 
re-aligning along the x-axis: 
 
 
 
 
 
 
 
 After 180x pulse    After additional time T  
 
The reason for this can be understood by thinking 
of a particular spin: suppose a particular spin 
acquired some phase just prior to the 180 pulse. 
After the pulse, its phase would be -. After a time 
T its phase would increase by  once again, so its 
phase at the end would be (-)+ = 0, i.e., it’s back 
at the x-axis.  If we’d continue acquiring 
throughout this experiment, we’d end up seeing 
the signal revive back again. This is called a spin 
echo. In terms of pulse sequences: 
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      T     T 
RF 
 
 
Now, the above drawing is a bit of a lie: in reality, 
the echo would be somewhat smaller than the 
original signal intensity. To see why, we need to 
divide the decay mechanisms into two: 
1. Decay due to microscopic T2 effects, which 

cannot be reversed with a spin echo. 
2. Decay due to a spatial spread of precession 

frequencies in the sample, as described above. 

This might come about because, for example, 
your main field is not perfectly homogeneous, 

 0 0B B r , leading to a precession 

frequency    0B r r  (per chemical 
shift). This is sometimes called 
inhomogeneous broadening. 

Each of these processes is characterized by its own 
decay constant. The microscopic decay is described 
by T2 which we’ve already met. Inhomogeneous 
broadening leads to exponential-like decay in 
many cases and is denoted by T2’. The combined 
rate, denoted 1/T2*, is under most circumstances 
given by the sum of rates: 
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Only the inhomogeneous broadening is refocused 
by the 180 pulse. The microscopic fluctuations 
are unaffected, meaning T2’ decay will be refocused 
but T2 will not, leading to: 
 
 
 
 
 
 
 
What would happen if we were to give successive 
180x pulses, spaced 2T apart? One might initially 
think this pattern would repeat itself indefinitely, 
since the spins would dephase, get flipped (by the 
180), rephase, dephase again, get flipped (by the 
180), rephase, dephase, ... ad infinitum; in effect, 
there is relaxation that needs to be taken into 
account. But what relaxation? Because the 180 
pulse refocuses spins with different precession 
frequencies, there are no B0-inhomogeneity effects 
in the overall decay. Only the “true microscopic 
decay”, T2, plays a role here: 
 
   Envelope  e-t/T2 
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The decay after the excitation is determined by T2* 
(by both microscopic field fluctuations and field 
non-homogeneities), but the overall decay of the 
echoes is determined by T2 alone. This furnishes us 
with a method of measuring the “true” T2 
microscopic decay of a sample. 
 
1.4 Homonuclear Spin Echoes and 

J-Coupling 

 

It is very important to realize that J-coupling 
evolution continues to evolve during a train of  
pulses given on a homonuclear system, and is not 
refocused by them. This makes quantifying the T2 
decay of J-coupled species tricky. We will not 
spend any time on this topic, but you should keep 
in mind it’s a non-trivial topic.  
 
 
2. A Microscopic Look at T1 

and T2 

 
2.1 Relaxation is Caused By 

Fluctuating Fields 

 
What causes relaxation? We have three 
mechanisms to account for: 
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1. Red: why do Mx, My decay? 
2. Green: why does Mz changes with a 

different time constant, T1? 
3. Blue: why does buildup occur? 

 
The buildup part (#3) is difficult to explain and 
we’ll have to leave it at that. The decay of M, with 
different transverse & longitudinal times, will be 
explained next. 

The nuclear magnetic moments each create 
their own fields: 
 

 
 

Now think about the following experiment: take 
two spins, fix one and move the other one about. 
Just by virtue of moving, the field “felt” by the 
spin changes: 
 
 

 
(Red: magnetic field) 

 
Since all water molecules keep tumbling and 
moving around (a.k.a. brownian motion), each 
sees the main field + a fluctuation field created by 
the other spins. These fluctuating fields are what 
cause relaxation. You can think of the spin of a 
single molecule as “tumbling” on the surface a 
sphere: 
 
 
 
 
 
 
 
 
 
 Without fluctuating  With fluctuating 
 fields: precession   fields:  precession + 
        erratic “jumps” (not 
        drawn to scale, etc.) 
 
with the end result being the total magnetic 
moment decays back to equilibrium. 



 The fluctuating fields BD felt by a spin can also 
be composed into transverse & longitudinal 
components: 
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The longitudinal fluctuating field causes transverse 
relaxation and the transverse fluctuating field 
causes the longitudinal relaxation. 
 
2.2 Transverse Relaxation (T2) 

 
Why does the transverse magnetization get “eaten 
up”? Let’s work in the lab frame. Imagine first no 
fluctuating fields. A bunch of spins in an 
isochromat would all rotate with the same Larmor 
frequency, 0=gB0. 
 Now imagine each spin feels a fluctuating field 
along the z-direction, so its precession frequency 
also becomes time dependent: 
 

(t)=g(B0+BD,||(t)) 
 
 

 
Total 
field =  
 
 
 
    Main B0 field  Smaller dipolar  

(large, ~ Tesla) fluctuating 
longitudinal  
field (<<main)  

 
Imagine exciting a spin onto the xy plane. Without 
the fluctuating field, it would just execute 
precession and make a phase f=gB0t after 
precessing for a time t. With the fluctuating field 
along z the precessing frequency fluctuates as well, 
with the end result being a slightly different 
precessing frequency at the end, f+f, where f 
depends on the exact nature of the fluctuations 
(imagine turning a wheel with a shaking hand): 
 
 
 
 
 
 

 
   
 
 
 
 
  No fluctuations  With fluctuations 
  (“Firm hand”)   (“Shaky hand”) 
        Note here f<0 
 
Now imagine a number of spins. In the absence of 
fluctuations they would all make the same angle. 
In the presence of fluctuations, they would fan out 
(remember, each spin feels a different fluctuation): 
 
 
 
 
 
 
 
  
 Many spins,      Many spins, 
 no fluctuations.     fluctuations. 
 (microscopic view)    (microscopic view) 
 
This is what happens microscopically. Now, the 
macroscopic magnetization is the (vector) sum of 
the microscopic magnetization. What happens 
when you sum vectors that don’t point in the same 
direction? They (partially) cancel out. Example: 
 
 
 
 
 
 
 
 
 
 
 
Top: summing 4 vectors not pointing in the same 
direction. Bottom: all 4 vectors point in the same 
direction. In both cases, the “mini-vectors” (blue) 
all have the same size. You can now see why the 
magnetization in the plane decays: 
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How fast does M decay – what determines T2? 
Quite simply: the rate of fluctuations. Fast 
fluctuations will result in lesser dephasing and 
hence slower decay.  

An analogy might help see this: think of 
diffusion. Molecules randomly change their 
direction upon colliding with each other. It should 
be intuitively apparent that, the lower the 
concentration of your sample, the larger the 
diffusion. Here the story is the same: you can think 
of the spin as “diffusing” under the action of the 
fluctuating field – slower fluctuations mean “fewer 
collisions” and hence a “less dense” environment, 
leading to greater “diffusion” (dephasing, in our 
case). 

This directly relates to molecule sizes, because: 
 
 Large molecules  

 Tumble slowly 
   Slow fluctuations  

 Short T2 (fast  decay) 
 
 Small molecules  

 Tumble fast 
   Fast fluctuations  

 Long T2 (slow decay) 
 
Hence, large molecules such as proteins have short 
T2s, and as a result suffer from both broad 
linewidths (leading to a lack of spectral resolution) 
and smaller signal intensities (leading to lesser 
SNR). This is one of the reasons why the study of 
large proteins can be very challenging.  

We can draw this graph: 
 
      T2 
  Slow 
  decay 
 
 
 
  Fast 
  Decay        Tumbling 
    Slow /    Fast / 

    Large mol.   Small mol.  
  
In tissue, water can be free (A) or in the vicinity of 
large macromolecules (B), which slow it down and 
lengthens its T2: 
 

 
 Fast, long T2   Slower, shorter T2 
 
In solids, where motion is greatly reduced, T2 can 
be extremely short. 
 
 
2.3 Longitudinal Relaxation (T1) 

 
The x & y components of the fluctuating fields 
cause longitudinal relaxation. This can be easily 
understood if you can think of these fields as tiny 
“RF pulses” that tilt the magnetization.  
 Remember the idea: for an RF pulse to be 
successful, it needs to be on resonance. The rate of 
fluctuations determines whether the RF is on 
resonance or not: when the field fluctuates at the 
same frequency as the spin, 
 

fluctuations = 0 = gB0 
 
the tiny “RF pulses” tilt the magnetization back to 
equilibrium much more efficiently, hence making 
T1 shorter. Too fast or too slow – and you won’t 
be on resonance anymore, diminishing the 
relaxation.  
 As before, we can draw: 
 
        T1 
  Slow 
  decay 
 
 
 
  Fast 
  decay        Fluc. rate 

    Slow    Fast 
    Large mol.   Small mol. 
 

In bio. tissue we are 
in the fast regime 

The fluctuating z-field causes the spins to 
spread out (dephase), and hence add up 
destructively, leading to a decay of the 
macroscopic magnetization vector, M. 



In solids, for example, we saw T2 is very short, but 
T1 will be very long.  
 
2.4 Application: Relaxation in 

Cancer 

 
As an interesting application, let’s apply our 

microscopic insight to understand why T2 and T1 
values in tumors are larger than in regular tissue. 
Cancer is usually edematous: cells swell with water, 
making the macromolecule concentration lower, 
making the water molecules tumble faster, 
increasing T2 and T1. 

 
 Cancer  Swelling  

 Lower macromol. concentration  
 Faster tumbling of water molecules 
 Larger T1, T2 (slower decay) 
 

 
3. Cross Relaxation 

 
3.1 Phenomenology 

 
We have so far assumed a spin relaxes because of 
its "environment". In reality, this environment 
could very well be another nuclear spin in the same 
molecule. Two nuclear spins which are close 
enough can induce cross relaxation, in which the 
random tumbling of one creates fluctuating fields 
at the position of the other and vice-versa.  
 Let's look at longitudinal cross-relaxation. 
Assume two spins in the same molecule. In the 
absence of RF fields, assuming we are on-
resonance, and neglecting cross-relaxation, each 
spin would relax with its own T1 time constant: 
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This can be recast in matrix form: 
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where R1=1/T1. The presence of cross-relaxation 
implies the off-diagonal terms in the matrix are 
non-zero: 
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Just like with many other things in nature, cross 
relaxation is reciprocal, meaning the rate at which 
spin (1) relaxes because of spin (2) is the same as 
the rate at which (2) relaxes because of (1). Hence 

   12 21
1 1  . Cross relaxation can also occur 

between transverse magnetization states.  
 Cross relaxation has two very important roles 
in NMR: first, it is distance dependent. This 
makes it a highly useful tool in investigating 
molecular structure, and it is for this reason Kurt 
Wutrich was awarded the 2002 Nobel prize in 
chemistry. When a particular protein folds, for 
example, its different parts come close together and 
we can observe cross relaxation between peaks; 
while when it is unfolded, the cross-relaxation 
effects disappear. For example, in the folding 
protein diagram below, points A and B are initially  
far apart and no cross-relaxation will occur. In the 
final folded state they draw close together and 
cross-relaxation can be observed: 
 
 
 

 
 
 
 
The proximity-dependent cross-relaxation effect is 
usually interpreted qualitatively and not 
quantitatively. It is observed when the distance is ~ 
5 angstroms or less.  
 The second important use is for enhancing the 
polarization of a system. Unlike INEPT, this 
enhancement is not coherent and relies on 
modifying the thermal equilibrium state of the 
spins. We study this effect next.  
 

A

B



3.2 Nuclear Overhauser Effect 

(NOE) 

 
The NOE effect was first suggested by Albert 
Overhauser in 1953, who suggested enhancing 
nuclear polarization by irradiating the electron spin 
transition in metals. His initial suggestion was met 
with great skepticism in the community, but was 
verified later that year by Carver and Slichter. 
Although initially suggested for electron-nuclear 
dipolar spin coupling, the NOE mechanism is 
equally valid for nuclear-nuclear dipolar spin 
coupling. 
 In the basic NOE experiment there are two 
transitions, A and X. When X is saturated by a 
continuous RF irradiation pulse, the magnitude of 
A changes. When it increases we say the NOE 
effect is positive; when it decreases, we say the 
NOE effect is negative. One often runs two 
experiments, one in which no irradiation is applied 
and one in which X is irradiated, and takes the 
difference spectrum: 
 
 

 
 

The NOE is best thought of in terms of energy 
level diagrams. For a single spin-1/2, relaxation 
amount to transitions between the "up" and 
"down" states: 
 

 
 
When we saturate a transition with an RF pulse we 
equilibrate the populations leading to no signal:  
 

 
 
The NMR signal we observe (after excitation) will 
be proportional to the difference between the two 
levels. In the first case we’ll observe the regular 
NMR line, and in the second case we won’t 
observe a line at all. Of course, after we stop 
irradiating the populations of the second case will 
relax back to their Boltzmann distribution 
described by the first diagram and we’ll see an 
NMR line again. 

Two uncoupled spin-1/2s - say, a 
heteronuclear hydrogen pair - would be described 
by two such uncoupled diagrams. Here, N spins 
would be divided in proportion to their Boltzmann 
constants at the high temperature approximation, 
i.e. (neglecting normalization): 
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Now, since E1 and E2 only differ by the chemical 
shift (which, for homonuclear spins is extremely 
tiny), we can approximate 1 2E E E  , and 
obtain: 
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Initially, both spins are not radiated prior 
to acquisition. 

The X spin is irradiated, and the 
magnitude of A changes. Here it 
increases, meaning a positive NOE effect. 

Taking the difference spectrum allows you 
to examine the NOE effect in greater 
detail.  
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This means that, if we had N spins, they would 
have the following distributions: 
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and the corresponding energy level diagram would 
be: 
 

 
 

The red arrow indicates transitions of system (2), 
while the green arrow indicates transitions of 
system (1). These are called “single quantum 
transitions” since in each transition only one spin 
changes direction while the other remains 
unchanged. The spectrum, which will consist of 
two lines, represents the two possible single 
quantum transitions, (1) and (2). 

The presence of cross-relaxation can be 
thought of as processes in which both spins change 
simultaneously. The blue line indicates a zero 
quantum transition, also called a "flip flop" 
transition, in which both spins change direction 
simultaneously. The total spin doesn't change, 
hence the name, "zero quantum transition." The 
orange line is a double quantum transition in 
which the spins flip from down/down to up/up 
and vice-versa. Once again, the name is self 
evident: the total angular momentum changes by 
two quanta.  

 When we irradiate the transition 
corresponding to system (2), we equalize the 
corresponding populations and the corresponding 
line in the spectrum disappears: 
 

 
The population differences across (2) become 0, 
but the differences across (1) remain . Note the 
total number of nuclei is conserved and equals N. 
However, as we try to take system (2) out of 
thermal equilibrium it tries to return to it, and it 
does so through all three possible mechanisms: the 
single quantum transition of system (2), the ZQ 
and the DQ transitions; the latter two also affect 
the population of system (1). 
 To be more precise, system (2) has too many 
down spins and too few up spins. To re-establish 
the   population difference between the   

and   states, and the   and   states, 

the system can do one of three things: 
 Relax via the single quantum transition (2). 
 Relax via the ZQ transition. In this case, 

spins for system (2) would move from down 
to up, causing spins of system (1) to move 
from up to down, causing partial loss of signal 
for peak (1), leading to a negative NOE. 
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 Relax via the DQ transition. In this case, 

spins for system (2) would move from down 
to up, causing spins of system (1) to move 
from down to up with them. This would 
increase the size of peak (1), leading to a 
positive NOE. 

 

 
 
Whether the NOE is positive or negative will 
thereform depend on the dominant relaxation 
mechanism. It turns out that in small, fast 
tumbling molecules, the DQ transition dominates 
and the NOE is positive. In large molecules, like 
proteins, the tumbling is slow and the ZQ 
transition dominates, and the NOE is negative. 
 How big is the NOE enhancement? This will 
depend at the nuclei observed and the molecular 
sizes. For example, for fast tumbling molecules, 
one can show that: 
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depending on the nuclei investigated, so: 
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(the negative sign at the end is because the 
gyromagnetic ratio of 15N is negative) 
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