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J-Coupling 
Lecture notes by Assaf Tal 

 
1. Origins of J-Coupling 

 
In the previous lecture we’ve explained how and 
why ethanol should yield a spectrum having three 
peaks: 
 

 
 

Today’s high resolution NMR spectrometers, 
however, reveal fine structure, known as J-
splittings. We will explain its origins and show 
how it can be used to our advantage. 
 
1.1 Physical Origins 

 
J-coupling, also known as scalar coupling, arises 
from nuclear magnetic moments in the same 
molecule affecting each other through the electron 
cloud, which is shared among atoms due to the 
molecular bonds in the molecule. This is not a 
direct interaction of the two nuclear magnetic 
dipole moments, but one which is mediated 
through the chemical bond.  
 Since this effect is observed in liquids, in which 
molecules tumble very fast and most interactions 
are averaged out, one would suspect this is some 
interaction which does not depend on the 
orientation of the molecule (since it doesn’t get 
averaged out by the motion). The splitting’s “size” 
– that is, sizes of the split peaks and their distances 
from each other - is also found to be independent 
of temperature and static field B0. A third fact is 
that it is symmetric: for example, if we look at a 
phosphorous triflouride (PF3) molecule, in which 

all nuclei have a spin-1/2, then we will measure a 
splitting in both the P and the F spectra: 
 

 
  31P spectrum    19F spectrum 

P=F 
 

The first explanations for this was that the nuclear 
magnetic moment of nucleus A induces currents in 
the electronic cloud (shared between two nuclei A, 
B), which in turn create an induced moment 
which interacts with the nuclear moment of 
nucleus B. The calculated effect turned out to be 
too small. 
 The next explanation proposed, which is the 
accepted one today, relies on the Pauli exclusion 
principle. In the absence of a nuclear magnetic 
moment, the electronic spins in a chemical bond 
will be anti-parallel: either  or . In fact, the 
state of the system will be made up of an equal 
mixture of both. This is a quantum mixture (i.e. a 
linear superposition), not a statistical one. 
 
 
 
 
 
 

In the absence of a nuclear spin, 
the electronic state will be made up 

of a mixture of both of these electronic 
spin states. 

 
If we put a nuclear magnetic moment in atom A 
(the left one) then it will be more favorable for the 
electronic spin of atom A to point down (due to 
magnetic energy), and as a result for the electronic 
spin of atom B to point up (due to Pauli), and 
therefore for the nuclear magnetic moment at B to 
point down (again due to magnetic energy): 
 
 
 
 
 
 
 Less favorable     Favorable 
 

(OH)-(CH2)-(CH3) 



This creates an effective nuclear coupling known 
as scalar or J-coupling, mediated via the chemical 
bond – that is, via the electronic cloud. The idea 
can be extended via several bonds and different 
nuclei:  
 

 
 
The J-coupling causes a shift in the energy of two 
spins of the form 
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When the two nuclear spins are parallel (up-up or 
down-down) the energy is unfavorable, and when 
they are anti-parallel (up-down or down-up) the 
energy is more favorable.  
 
1.2 Nomenclature 

 
All J-couplings derive from the same physical 
mechanism, but people sometimes make a 
distinction between them. First, a superscript 
preceding J refers to the number of bonds between 
the two nuclei, so 2J means two bonds, such as in a 
H-C-H. Two such “twin” protons are sometimes 
called geminal in chemistry, so 2J constants are 
sometimes called geminal. Subscripts following J 
indicate which nuclei are coupled, so coupling 
between two protons in H-C-H will be denoted 
2JHH. Three-bond couplings 3J are called vicinal. 
More bonds are just termed “long-range”, with J-
couplings rarely exceeding 5 bonds (5J). Proton-
proton couplings also tend to decrease with the 
number of bonds (although not always!), and are 
on the order of 1-10 Hz.  
 
1.3 The Secular Approximation 

 
The general hamiltonian for many NMR systems 
is very complicated. Fortunately, we can often 
simplify it using the secular approximation. 
Remember that we always have a constant, strong 
magnetic field B0 point along the z-axis. What 

would the effect of adding another small, constant 
field? To a 0th approximation, it would be nothing: 
the added field is just too small. To the next 
approximation, let’s assume without loss of 
generality the new field is in the xz plane and 
decompose the new field along the x and z axes:  
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, the x-component of the new merely tilts it 
very very very slightly away from the z-axis. How 
slightly?  
 

max
0

1
B

B
     

 
since the maximal angle max is obtained when B is 
perpendicular to B0, and then  max maxsin    

because max is so small. This tilt is so small it can 
be neglected for all practical purposes. 
 The z-component of B gets added to B0. Can 
we neglect it? No! Because the shifts induced by B0 
can be on the order of the chemical shifts we 
observe in the sample: Bnew,z=B0+Bz. Even if B0 
is 500 MHz and Bz is 20 Hz, it still has a very real 
effect on the order of other shifts we see. 
 This same reasoning can be extended to non-
constant small B’s, with one exception: if the extra 
fields have a temporal component that matches the 
resonance of the main field, it will induce a 
resonant transition. This is the entire principle on 
which NMR is built! Luckily, most additional 
interactions do not have this sort of resonant 
component, and we can retain their component 
parallel to the main field. This approximation is so 
prevalent in NMR that it merits its own textbox: 
 



B0

B 

Bnew 



 
 
 
1.4 Weak Coupling 

 
Suppose we have two J-coupled spins. Their 
hamiltonian is: 
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Can we apply a secular approximation here? There 
are two fields so it’s unclear what to compare the 
J-interaction to. This is resolved if we transform to 
a frame that rotates with an angular frequency 1, 
such that 
 

 2 1 2 1 2

2ˆ ˆ ˆJ
H
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. 

 
Now it becomes clear that for us to apply the 
secular approximation, we must have 
 

1
J
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This is the weak coupling approximation, under 
which 
 

 1 2 1 2 1 2

1 2

2 ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆ

J x x y y z z

z z

J
H S S S S S S

J
S S





  







 

 
Then: 
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Unless otherwise noted, we will assume henceforth 
the weak coupling approximation, which holds for 
a surprising number of cases in NMR.  

 
 
 

1.5 1  
 
In NMR we many times set  =1 and talk in terms 
of frequency instead of energy. For example, the J-
coupling hamiltonian will be 
 

1 1 2 2 1 2
ˆ ˆ ˆ ˆ2z z z zH S S JS S     , 

 
where now the spin operators don’t have any   in 
them: 
 

0 1 0 1 01 1 1ˆ ˆ ˆ, ,
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We’re going to adopt the same convention from 
this point onward unless otherwise stated. 
 
3.4 J-Coupling Yields Important 

Structural Information 

  
J is not just an annoying constant that splits lines, 
but can actually convey useful information and 
assist in analysis and peak assignment. For lactate, 
J-coupling assisted us in assigning peaks to 
chemical groups, since we knew the CH should 
yield four lines (split three times by CH3) while 
CH3 should yield two lines (split once by CH). 
This helped us assign the resonances in the 
spectrum without even knowing anything about 
their chemical shift a-priori. 
 The value of the J-coupling constant can yield 
structural information about a molecule. A 
scientist by the name of Martin Karplus found an 
empirical relation between the magnitude of 
vicinal (3-bond) 3JHH couplings and the dihedral 
angle  of the bonds: 
 
 
 
 
 
 
 
 
 
 
 
 

     3 2cos cosJ A B C      

The secular approximation: If you have a large 
main field B0, then a small, non-resonant 
additional interaction can be approximated to 
first order by retaining only its component 
along B0. 

H
H





 
Basically, each plane is defined by the C-C bond 
and the corresponding C-H bond, and  is the 
angle between the two planes. The Karplus curve 
usually looks something like: 
 

 
 
  

 
 
 
 
 
 
 
The idea is that the overlap between molecular 
orbitals – and hence the strength of the exchange 
interaction – varies when the angle  changes. The 
overlap is minimal when the wavefunctions are 
orthogonal, so 3J tends to be smallest when =90. 
 The Karplus equation (above) is a major tool 
in structural chemistry. For example, the vicinal 
coupling changes between cis and trans 
configurations of double-bond alkenes:  
 
 
 
 
 
 
   cis      trans 
 
This difference is seen for example in 1,1-
difluoroethylene: 
 

 
 
The 3J coupling constant of Ha to Fb (trans) is 
different from the coupling of Hb to Fb (cis).  

Incidentally, Karplus’s original JACS paper 
from 1963 remains one of the journal’s most cited 
papers of all time, and Karplus himself is a notable 
theoretical chemist who won the 2013 nobel prize 
(although not for his NMR work, but for his 
theoretical chemical modeling work).  
 

2. A Quantum Mechanical 

Treatment 

 
2.1 The Hamiltonian and System 

 

The J-coupling interaction is one which does not 
get averaged by the molecules’ motion. It is of the 
form 
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This means that the full Hamiltonian of the 
system is 
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where 
   1 2
0 0

avg 2

    and    2 1
0 0     . Now, 

we are very lucky that the hamiltonian is still 
diagonal. This means we still get to keep our old 
eigenfunctions of the hamiltonian without the J-
coupling, which now have energies: 
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as you should verify explicitly (just do the matrix 
multiplication).  

 
2.2 The Propagator  

 
The fact that H is diagonal makes it easy for us to 
calculate the propagator in matrix form: 
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The hamiltonian can be written as 

1 2 JH H H H   , where  1
1 0 1̂zH I  , 

 2
2 0 2̂zH I   and 1 2

ˆ ˆ2J z zH JI I . A very 
important property of these three hamiltonians is 
that they all commute: 
 

     1 2 1 2, , , 0J JH H H H H H   . 
 

This means we can decompose the propagator into 
each of its parts: 
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Not only that: we can change the order of the 
terms (e.g. 1 2 1 2J JU U U U U U ). This means that 
when we propagate the density matrix, we can 
choose the order in which we calculate the effects 
of the different terms. For example, we could 
calculate the effect of the J-coupling first, then the 
Zeeman term for the second spin, then for the 
first: 
 

J-coupling

† † † †
1 2 2 1

Zeeman for 2nd spin

J JU U U U U U U U 


  

 
or we could first deal with the effects of the 
Zeeman interaction and chemical shifts, and only 
then calculate the effect of J-coupling: 
 

J-coupling

† † † †
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Zeeman 

J JU U U U U U U U 


  

 
and so forth. To sum up: 
 

 

2.3 The Zeeman Evolution 
 
We’ve already seen how the Zeeman interaction 
evolves.  
 
2.3 The J-Coupling Evolution 
 
We now come to the “meat” of the chapter: how 
does the weak J-coupling term affect the spins’ 
evolution? To do that, we need to calculate its 
effects on the different density operator terms such 
as ijI  (i=1,2, j=x,y,z), and pairs such as ij mnI I  
(i,m=1,2, j,n = x,y,z). This is a pain to do and I 
won’t derive all of them, but I’ll show you how to 
go about it and then just list the results. 
 Let’s look at how I1x evolves in time: 
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One way we could go about doing this is simply 
writing out everything explicitly: 
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and carry out the matrix multiplication by brute 
force, and finally take the trace of the resulting 
matrix with all possible combinations  operators 
( ij mnI I , ijI ) and decompose it into a sum. A slightly 
easier approach uses the fact that  
 

     1 22 /
1 22 2cos 4 sinz ziJI I Jt Jt

J z zU t e I i I I      
 

This can be easily deduced from the matrix form 
above. Now we can compute, for any state : 
 

For weak J-coupling we can apply each 
interaction  in turn, and we can choose the 
order in which the interactions will play out 
(the result will be the same). 
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For example, if 1xI  , then  
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so 
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We can repeat this for all possible combinations. I 
will not do the explicit math here and merely 
quote the results. The following operators are 
unaffected by the J-coupling Hamiltonian: 
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The remaining ones perform a right-handed 
“rotation” as indicated by the following diagram:  
 
 
 
 
 
 
 

 
Two similar circles exist for I2x and I2y (just swap 
12 in the above diagrams). The “angular 
momentum” of these rotations is  
 

J J  . 
 

Example: Suppose 2 yI  . How does it evolve 
under the weak J-coupling Hamiltonian? 
Answer: 
 

   weak J-coupling
2 2 1 2cos 2 siny y z xI I Jt I I Jt  

 
 
2.4 RF Pulses 
 
As with the case of no J-coupling, “hard” RF 
pulses are assumed so strong and short that no 
chemical shift or J coupling occur while they are 
applied. Is this a good approximation? Hard pulses 
often take tens of milliseconds to apply on a 
spectrometer, while J coupling values are on the 
order of 10-100 Hz, so very negligible evolution 
takes place during the pulse’s application. The 
approximation is very good.  
 Some pulses out there are not “hard” and take 
a long amount of time to apply. During such 
pulses one cannot neglect the J-coupling or 
chemical shift evolution. We won’t deal with such 
advanced pulses in this course. 
 
 
3. Pulse-Acquire Revisited 

 
3.1 Deriving J-Splittings 

 
Let’s look at two spins with weak J-coupling 
between them. Starting from thermal equilibrium, 
the state of the system is (neglecting the constant 
identity matrix term): 
 

1 0 2 0
1 2 1 1 2 22 2z z z z

B B
I I a I a I

kT kT

 
      

 
This could be any pair of nuclei, e.g. C-H, so we’re 
not assuming the same ’s. Furthermore, we’ve 
omitted the identity part since it does not evolve in 
time and therefore does not contribute to the 
measured signal. 

I1x 

2I1yI2z 

-I1x 

-2I1yI2z 

I1y 

-2I1xI2z 

-I1y 

2I1xI2z



 A “hard” /2 pulse will tilt the product 
operators to the xy-plane 
 

1 1 2 2x xa I a I   . 
 

Let’s now let the system evolve. We’re free to 
choose whether to apply the Zeeman or J-coupling 
evolution first. I’ll go with the Zeeman (chemical 
shift) Hamiltonian first: 
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Next, let’s apply the J-coupling hamiltonian: 
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As you can see, things can get ugly real fast. But 
fear not! Let’s assume these are heteronuclear spins 
and acquire a signal from spin 1: 
 

    1 1
ˆ ˆ~ tr x ys t S iS   

 
Only I1x and I1y will contribute to the signal so we 
can safely disregard all other terms and obtain: 
 

    1
1~ cos i ts t a Jt e   

 
We have neglected relaxation. We see that our FID 
is now modulated by the J-coupling evolution. 
Remembering that 
 

   1
2cos ix ixx e e   

 
we rewrite s(t) as 
 

     1 11 2 22 2

2~
J Ji t i tas t e e

       
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where 1 12  . We observe two effects: 
1. The J-coupling amplitude modulation 

cos(Jt) has led to two observable peaks, at 

1 2
J  . This is the splitting we’ve seen in the 

spectrum of ethanol (and other molecules). 
2. The amplitude of each peak has been halved 

compared to the original, unsplit peak. We’ve 
lost half of our SNR, although the total 
integrated area hasn’t changed. 

Thus, we can summarize the effect of J-coupling 
on the spectrum of a spin pair: 
 

 
 
J-splittings can be a boon or a curse. They let us 
sometimes identify which peak corresponds to 
which part of the molecule. On the other hand, 
they reduce the SNR and complicate the spectrum, 
and it is therefore sometimes desirable to make 
them go away. This is called decoupling and we’ll 
show how to do this in a bit. 
 
3.2 Multiple Couplings 

 
The above calculation was carried out for a weakly 
coupled pair of spins. What happens in more 
realistic situations? For example, in lactatic acid, 
 

 
 
the hydrogens in the CH3 and CH groups are J-
coupled. This means the H in CH is coupled to 
three hydrogens in CH3, and gets split three times. 
On the other hand, the CH3 resonance gets split 
only once by the H in CH.  
 Multiple J-splittings are dealt with (in the weak 
regime!) by applying the splitting rule multiple 
times. Thus: 
 
 

If a resonance A is coupled via weak J-coupling 
to reosnance B, do the following: 
1. Halve the amplitude, and:  
2. Replace the resonance at  with two 

resonances at 2
J    



 
Here’s a simulated spectrum of lactate in water: 
 

 
 
 
 
 
 
 
 
 
 
 

This spectrum illustrates the boon/curse duality. 
On the one hand, it is more complicated than the 
original spectrum which should’ve had only two 
peaks. On the other hand, we immediately know 
which peak corresponds to which group in the 
molecule: the single split peak is from the CH3 
group, while the group of four peaks at a 

3 31 1
8 8 8 8: : :  ratio is from the triply-split CH. 
 
3.3 Strong Coupling 

 
The analysis of strong coupling is not an 
impossible feat for two spins, since all you need to 
do is diagonalize the hamiltonian, find the energy 
levels and calculate the density matrix’s time 

evolution. We’re not going to delve on that in this 
course, but we will mention what happens to the 
spectral pattern for strong J coupling. For two 
spins, as  becomes smaller, you get a “roofing” 
effect, where the outermost peaks become smaller 
until they reduce to nothing: 
 

 
 
 
 

 
3.4 Magnetic & Chemical 

Equivalence 

 
Two nuclei are chemically equivalent if they have 
the same chemical shift, i.e. are in the same 
chemical environment. The nuclei are 
magnetically equivalent if they are chemically 
equivalent and have the same J-coupling to all 
other nuclei in the molecule.  
 An example of chemical equivalence without 
magnetic equivalence is given by 1,1-
difluoroethylene: 
 

 
AA’ system 

 
Ha and Hb are chemically equivalent, but the J-
coupling between Ha and Fb is different from that 
between Hb and Fb (trans vs cis). The fact that Ha 
is coupled to Fa the same way Hb is coupled to Fb is 
irrelevant. On the other hand, difluoromethane is 
both chemically and magnetically equivalent: 
 

 
A2 system 

3rd coupling 
to CH3 

First coupling 
to CH3 

2nd coupling 
to CH3 

1 

1 1
2 2:  

1 1 1
4 2 4: :  
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CH spectrum for Lactate 



 
The NMR literature uses the following notation: 
capital latin letters are used to denote chemical 
shift, with letters “far away” in the alphabet 
denoting spins which have a chemical shift 
separation much larger than their J-coupling 
different, e.g. AX. If the letters are close, the J-
coupling is considered strong, e.g. AB or ABC. 
“Medium” coupling between three spins might be 
denoted by AMX. Another example: ABX is a 
system with 3 spins, where A and B are “close” 
compared to their J-coupling constants and X is 
“far away”. 

If two spins have the same chemical shift and 
different J-couplings to a third spin (i.e. are not 
magnetically equivalent), they will be denoted AA’. 
Magnetically equivalent spins will be denoted A2 
(or A3, or An, depending on how many spins there 
are). Not all systems can be expressed with the 
alphabet notation, but many can and it is a useful 
and widely used notation. 
   
3.5 More Complex Couplings 

 
The coupling patterns of many other systems can 
be studied, but complexity is exponential in the 
number of spins. For example, the simple ABX 
proton system is not simple at all: 
 

 

 
 
NMR chemists who specialize in assigning peaks 
and studying small molecules become adept with 
time in many of these patterns, but their study is 
quite specialized and we will not pursue it further  
in this course.  
 

3.6 Low Natural Abundance NMR-

Visible Isotopes Minimize the 

Coupling Effect 

 
J-couplings can exist between similar nuclei, 
possibly mediated via other nuclei (such as H-C-
C-H), or can exist between different nuclei, such as 
C-H couplings. However, one rarely sees such 
heteronuclear coupling effects in most hydrogen 
spectra, because most other NMR active nuclei 
appear only at very low natural abundances in 
nature. For example, 13C has a natural abundance 
of about 1%. Most carbon nuclei are 12C, which 
has no nuclear spin and induces no splittings. For 
example, a typical hydrogen peak coupled to a 
neighboring carbon nucleus might look like this: 
 

 
 
The large unsplit peak originates from the 99% of 
all hydrogen nuclei with 12C neighbors. The tiny 
satellite peaks originate from the 1% of hydrogen 
nuclei with 13C neighbors – those hydrogen nuclei 
got split.  
 Incidentally, the low natural abundance of 13C 
can be circumvented by labeling molecules with 
13C – that is, replacing 12C nuclei with 13C nuclei. 
This is possible by using 13C as a substrate when 
synthesizing the molecules.  
 
3.7 The “Meaning” of J-Coupling 

 
The splitting effect of J-coupling is sometimes 
explained in the literature as follows: in our 
statistical ensemble of spins, say a hydrogen and a 
carbon, each can be at an up or down state. Due to 
the external B0 magnetic field, the up state has a 
slight preference over the down state, so we might 
get the following configurations at thermal 
equilibrium, neglecting J-coupling which is much 
much smaller than the lab Zeeman interaction 
terms (percentages are exaggerated): 
 



 
Since the J-coupling term looks like 1 2

ˆ ˆ
z zS S  - 

positive for parallel pairs, negative for anti-parallel 
pairs, we see that for some of the pairs the first spin 
will experience a slightly lower precession 
frequency and for some pairs a slightly higher, 
based on the state of the second spin: 
 

 
 
This “explains” why we see two lines instead of one 
for spin 1: half of the spins of the first nucleus 
(26%+24%) have a precession frequency 1 2

J  , 
while the other half have a precession frequency 

1 2
J   and two lines appears. 

 This explanation is complete and utter 
nonsense because it relies on a classical statistical 
ensemble average. The splitting effect of J-coupling 
is observable in theory even with a single spin pair, 
i.e. a single molecule. It is a purely quantum 
mechanical manifestation which transfers 
polarization from, say, S1x to 2S1yS2z and back 
again to S1x. What is 2S1yS2z? One is temped to 
think of it as a system in which one spin is in the 
S1y state while the other is in the S2z state, but this 
is not quite “right”. For example, if we were to 
measure a signal, we would find that (calculate 
this!): 
 

 
      1 1 2 2 1 2

ˆTr

Tr

0

xy
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M

S iS S iS S S



     


 

So why can’t we see a signal? What we classically 
think of as “one spin is in the S1y state while the 
other is in the S2z state” is really 1 2y zS S    and 

not 1 2y zS S  . The state 1 2y zS S   has no 

classical analogue and, while some people have 
suggested pictorial representations, they all become 
too complicated or break down at one point. It is 
therefore to stick to a simpler view of the world: 
S1x, S1y, S1z, S2x, S2y, S2z are all classically 
comprehensible quantities, but S1xS2x, S1xS2y, 
S1zS2x, ... are all quantum mechanical entities with 
no classical analogue. We will therefore adopt the 
conservative but true approach stating that: 

 
 
4. Decoupling 

 
Sometimes J-coupling splittings are useful. For 
example, in the ethanol spectrum the number of 
splittings lets us “assign” multiplet groups to 
different parts of the molecule. However, splittings 
are often unwanted: 
1. They crowd the spectrum. 
2. They make you lose SNR. 
3. In some pulse sequences the multiplet peaks 

can have different phases and interfere 
destructively with one another, leading to 
weird, often unintelligible spectral patterns.  

We can make the splitting “go away” in 
heteronuclear systems using decoupling. To 
understand how, let’s first look at the effect of  
pulses on the NMR spectrum. 
 
4.1 Spin Echoes (-Pulses) Do Not 

Refocus J-Coupling Evolution in 

Homonuclear Spin Systems. 

 

It is very important to realize that J-coupling 
evolution continues to evolve during a train of  
pulses given on a homonuclear system, and is not 
refocused by them unless special circumstances 
occur (see below).  
 To see this, it’s easier to switch to the 
Hamiltonian view. The effect of a -pulse along, 
say, the x-axis can be viewed as the application of a 
propagator xiIU e  . Furthermore, if we have 
weak J-coupling, our propagator during the 

25% 25% 24%25% 

1+J/2 1-J/2 1-J/2 1+J/2 

26% 25% 25% 24%

J-coupling is a quatum mechanical 
phenomenon without a classical analogue, 
which transfers magnetization from observable 
states (say, S1x) to non-observable states (say, 
S1yS2z) and back again at a rate given by ~ 1/J. 



system’s evolution is 

   1 2 2/ z z z zi I S JI SiHtU e e         - let’s assume 
for simplicity we have two coupled spins. The 
propagator describing a -180- block is: 
 

   
   

180,

1 2
1 2 180, 180, 1 2

x

J x x J

U U U U

U U U U U U U U

 


 

 
where Ui is the Zeeman propagator and UJ is the J-
coupling propagator during . The Ui’s and UJ all 
commute. Furthermore,   ,

180,
j xi Ij

xU e   commute 
among themselves because they act on different 
spins. All we have to figure out is what is the 
commutator of combinations such as 1xi Ie   and U1 
or UJ. First, note that an Iz product operator 
evolves into –Iz under a rotation: 
 

    †
1 1

180, 1 180, 1x z x zU I U I  . 

 
so: 
 

   1 1
180, 1 1 180,x z z xU I I U  . 

 
We now prove this for any function of I1z, i.e.: 
 

   1 1
1 1

x xi I i I
z ze f I f I e   . 

 
To see this is true, just expand f(I1z) in a Taylor 
series and start applying 1xi Ie   to the terms. Terms 
having an even power of I1z will remain unaffected 
while those with an odd number will get a minus 
sign: 
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This means that 
 

1 11 1x xz zi I i Ii I i Ie e e e      
 

for any constant . In other words, 
 

       1 1
180, 1 1 180,x xU U U U   . 

 
The second spin is of course unaffected with the 
pulse acting on the first spin, and commutes with 
it: 
 

       1 1
180, 2 2 180,x xU U U U   

 
UJ, on the other hand, contains I1z and its sign gets 
flipped (again, I2z behaves as a “scalar” as far as 

 1
180,xU  is concerned): 

 
       1 1
180, 180,x J J xU U U U   . 

 
Similarly, for the second pulse: 
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Using these identities, we can simplify the full 
propagator as follows: 
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What happened is that the U1() and U2() on the 
left got converted into Ui(-) by the two operators 

   1 2
180, 180,x xU U  when commuting with them (and 

then canceled out with U1() and U2() on the 
right of    1 2

180, 180,x xU U ), while UJ() remained 

unaffected, since each operator  
180,

j
xU  flipped its 

sign once, and both left it unchanged. We say that 
the 180s refocused the chemical shift evolution 
but did not refocus the homonuclear J-coupling 
evolution.  
 
4.2 Spin Echoes (-Pulses) Do 

Refocus J-Coupling Evolution in 

Heteronuclear Spin Systems. 

 
What happens with heteronuclear coupling? Here 
we have independent control of the transmitters 
for both the first and second nuclei, so we can 



choose to pulse on the first, the second or both; in 
other words, we can have any of these 
combinations: 

 

 

   

1
180,

2
180,

1 2
180, 180,

x

x

x x

U

U

U U

 

 
Each combination will have a different effect. For 
example: The first will refocus the J-coupling and 
chemical shift evolution of the 1st spin but leave 
the chemical shift evolution of the 2nd spin intact.  
Our conclusions, by the way, are not true for 
strong (J>>) homonuclear J-coupling, since we 
can’t decompose the propagator into commuting, 
independet parts (U1U2UJ) like we did for the 
weak coupling case. 
 
4.3 Decoupling 

 
In heteronuclear systems is possible to remove 
splitting in nucleus A by transmitting on nucleus 
B. To see why this would happen, think about the 
following sequence for measuring the spectrum of 
a hydrogen nucleus while giving 180 pulses to the 
13C nucleus: 
 
 
 

 
 
Each of the 180 pulses on the carbon will refocus 
the chemical shift evolution of the 13C nuclei, 
while also refocusing the heteronuclear J-coupling 
without affecting the chemical shift evolution of 
the hydrogen nucleus. 

One can think of a limiting process in which 
the 180 pulses become closely spaced, in which 
case the irradiation becomes continuous: 
 

 
 

This is how most decoupling schemes are actually 
implemented. They have funny names like 
WALTZ-16. The exact details are outside the 
scope of this course, but the concept is 
straightforward as we’ve just discussed. 
 
5. INEPT: Coherent 

Polarization Transfer 

 
The coupling between spins can be used to transfer 
magnetization or “polarization” between them 
coherently. The most famous experiment or 
“module” for doing so is called INEPT: 
INsensitive nuclei Enhanced by Polarization 
Transfer. The idea here is that transfering 
polarization between a nucleus with large   (that 
has “a lot” of polarization) to one with small  
(which usually has less polarization) allows one to 
enhance the SNR of the experiment considerably.  
 The best analogy is that of coupled pendula: 
 
 
 
 
 
 
 
 
 
If we take out one pendulum from equilibrium 
and let it swing then, by a miracle, its amplitude 
will decay while the amplitude of the second 
pendulum will increase. This will then reverse, 
transferring motion back to pendulum 1, ad 
infinitum or until frictional losses kick in (this 
behavior happens if k is weak enough). The spring 
plays the role of J-coupling and determines the 
time to transfer. The mechanical analogy is not 
perfect but it should give you the rough idea.  
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5.1 INEPT 

 
The basic INEPT pulse sequence is shown below 
for a simple 2-spin hydrogen-carbon system: 
 

 
 
We’re going to neglect the initial carbon 
polarization and focus on what happens to the 
hydrogen polarization, because that’s the 
interesting part, so: 
 

A H zb H  . 
 

Following excitation (B): 
 

B H yb H  . 
 

If we now let our system evolve we must take into 
account both the chemical shift and J-coupling 
evolution (assumed weak), which we can play out 
in any order we choose: 
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If we now select 1/ 2J  , then / 2J    and 
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The last pulse will then bring the system into the 
state: 
 

 
 

2 cos

2 sin

D H z x H

H y x H

b H C t

b H C t

 






 

 
1. The HzCx term will then evolve into Cy (and 

back into HzCx), meaning into a carbon 
signal. We have thus transferred the excited 
hydrogen signal to the carbon nucleus. 

2. Here’s the important part: the size of the 
transferred term is proportional to bH, the 
Boltzmann factor of the hydrogen nucleus, 
and not bC. This is big, because 

/ / 4H C H Cb b    , meaning we’ve 
amplified the signal four-fold! 

3. The HyCx term is “invisible” and is never seen. 
To convince yourself of that, recall that under 
free evolution both Hy and Cx rotate: Hy 
evolves into a combination of Hx and Hy, and 
Cx evolves into Cx and Cy. Now calculate 

  tr xy x xM H C ,   tr xy x yM H C , 

  tr xy y xM H C ,   tr xy y yM H C  and 

see they are all zero! Thus they do not 
contribute to the acquired signal. 

4. We’ve set =1/2J. This means we need to 
know J beforehand. In reality J is guessed and 
then  is fine-tuned at the spectrometer to 
maximize the signal enhancement. 

 
The INEPT sequence can be further improved by 
removing the chemical shift evolution between the 
two 90 pulses using two -pulses: 
 

 
 
The calculation becomes even easier now. As 
before, 
 

A H zb H  . 

B H yb H  . 
 

Now upon evolution from B to E we only need to 
take into account the J-coupling evolution: 

1H 

13C 


90x 

90y 

90y 

A B C D 

1H

13C

/2 /2 
90x 180x

180x 90y 

90y 

A B C D E F 



 
   cos 2 sinC H y H x zb H J b H C J      . 

 
If we select 1/ 2J   as before, 

 
 2 sinC H x zb H C J    , 

 
which after the final pulse turns into: 
 

2D H z xb H C  . 
 

We can turn 2D H z xb H C   back into bHCy if we 
let J-coupling run its course while canceling out 
the chemical shift evolution: 
 

 
 
Why bother with this refocused version? Well, you 
can show that each will give rise to a slightly 
different FID expression, up to a constant overall 
phase and T2 relaxation which we omit:  
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You can show this explicitly by calculating 

    †Tr xyM U t U t  (do it as an exercise!). 

Thus, the resulting split peaks acquired on the 
carbon nucleus will look slightly different for both 
cases: for the first the two peaks will point in 
opposite direction, i.e. will yield an anti-phase 
doublet, while for the second the two peaks will be 
in-phase: 
 

 
The second option is not very desirable because the 
two peaks can be wide and very close and might 
end up canceling each other out, leading to a loss 
of signal. There, in-phase terms are always more 
desirable.  
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Appearance of different product operator terms 
in the spectrum, up to a constant overall phase. 


