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In the previous lecture we’ve explained how and 
why ethanol should yield a spectrum having three 
peaks: 
 

 
 

Today’s high resolution NMR spectrometers, 
however, reveal fine structure, known as J-
splittings. This structure and the system evolution 
it induces cannot be explained well by classical 
analogies and requires quantum mechanics. 
Luckily, QM is fairly benign in NMR since it deals 
with simple systems (spin-1/2). We review here 
some of the basic principles which will be of use to 
us in explaining J-coupling and other quantum 
phenomena. First, I will outline the rules by which 
quantum systems behave. Then, I will show you 
how to “solve” any problem in quantum 
mechanics, and finally we’ll discuss how to think 
about a spin-1/2 in the QM formalism. We’ll 
conclude by talking about systems of multiple 
spins. 
 
1. The Rules of Quantum 

Mechanics 

 
1.1 The State of a System is 

Represented by a Vector 

 
Quantum mechanics is just a set of rules which lets 
us describe a quantum system and compute how it 
evolves in time.  

The state of the system is given by the vector 
 . For a spin-1/2, this vector is 2-dimensional: 
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The coefficients a and b can be complex, but 
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So, for a state vector, we must have 1   . 
The two vectors  
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represent the famous “up” and “down” states of 
the spin: pointing with or against the external field 
B0. Sometimes we’ll also use the odd notation  
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1.2 Physical Quantities Are 

Represented By Matrices 

 
 Physical observable quantities of the system 
such as energy or angular momentum are given by 
matrices. For a spin, the most important is the 
angular momentum  
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This means that its magnetic moment is M S . 
The energy of a spin in an external magnetic field 
is given by 
 

 ,H t  M B r . 
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Note that B is not a property of the “system” we’re 
describing (the spin) and is therefore just a number 
and not a matrix. In the full quantum mechanical 
treatment of the world, fields are also matrices, and 
their treatment is called quantum field theory. It 
turns out this complexity isn’t necessary for NMR, 
so we’re going to retain fields as classical quantities. 
 The energy of also called the hamiltonian of 
the system. For example, the hamiltonian for a 
spin-1/2 in an external constant field along the z-
axis is (neglecting chemical shift): 
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where 0 0B   and  
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A word of caution: matrices behave a lot like 
numbers when dealing with addition, but differ 
considerably when it comes to multiplication. For 
real or complex numbers, ab=ba, but in general 
ABBA for two matrices A and B. We say that 
matrix multiplication is not commutative. We can 
define the commutator of A and B as: 
 

 ,A B AB BA  . 
 

Obviously, when  , 0A B   then AB BA  and 
A and B do commute. For example, check that 
ˆ ˆ,x yS S  do not commute, so , 0x yS S    , but Sx 

and I (the identity) do, so  , 0xS I  . Also, every 

matrix naturally commutes with itself,  , 0A A  . 
 
1.4 Measurement Outcomes Are 

Given By An Observable’s 

Eigenvalues 

 
An eigenvector of a matrix A is any vector v for 
which 
 

Av=v. 
 

The number  is called an eigenvalue of A 
corresponding to the eigenvector v. Obviously if v 

is an eigenvector then av is also one with the same 
eigenvalue, since 
 

A(av)=aAv=av=(av). 
 
So eigenvectors are only defined up to a scaling 
factor. An example is a rotation matrix about z by 
an angle  (in 3D): 
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Any vector along the z-axis will be an eigenvector 
with an eigenvalue 1 (since the rotation doesn’t 
affect it). All vectors not pointing along z are 
obviously not eigenvectors. So Rz() has only one 
eigenvalue (=1) with the eigenvector ẑ  up to a 
constant. 
 Another example: the z-component of the 
angular momentum,  
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This matrix has two eigenvalues and two 
eigenvectors: 
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 Suppose we want to measure a physical 
quantity X of a system. QM tells us the only 
possible results of measuring X are the 
eigenvalues of X. For example, the possible results 
of measuring the z-component of the angular 
momentum are 
 

2
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How does one go about finding the eigenvalues of 
a matrix? Let’s look at the x-component of the 
angular momentum: 
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We’re looking for its eigenvectors: 
 

xS v v . 
 

Shifting sides: 
 

  0xS I v   
 

The matrix xS I  turns the eigenvector v  into 

the zero vector. This means the v  is in the so-

called “null space” of xS I , which from linear 
algebra can only be if 
 

 det 0xS I  . 
 

The above equation furnishes us with an equation 
for finding the eigenvalues   (there can and often 
is more than one). Then we substitute each 
eigenvalue back into the equation xS v v  

and solve for the eigenvalues v .  
 Example: let’s look at the eigenvalues and 
eigenvectors of Sx. The eigenvalue equation is 
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This has two eigenvalues: 
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This is not unexpected: why would Sx be different 
from Sz? They’re the “same” angular momentum 
operator only along different axes. They should 
both yield the same set of possible physical 
outcomes if measured. We now calculate the 
eigenvectors associated with them. First, for  : 
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This yields two equations which are equivalent: 
a=b, so: 
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If we further normalize, 2 2
1a a  , we get 

1
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a   and so: 
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This is not the only possible solution: we could 
multiply this by any phase, ei, and still get an 
acceptable eigenvector. The phase as it turns out is 
physically meaningless, but should be kept in 
mind. 
 Similarly, for   we can solve and obtain (up 
to a phase ei): 
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To sum up: 
1. An NN matrix will have, at most, N 

eigenvalues. 
2. Each eigenvalue can have one or more linearly 

independent eigenvectors. 
3. If the matrix is an observable, it will have N 

independent eigenvectors j  (j=1,...,N) 

which will constitute a basis, meaning every 
other vector can be written as a linear 
combination of them: 1

N
j j ja   . 

 
1.5 Measurements Are Probabilistic 

 
Suppose we want to measure the z-component 
angular momentum of a system in a state  . We 
know that the possible outcomes are the 
eigenvalues of Sz, which are / 2 .  It turns out 
that if we set up the system in the state   and 
measure Sz, we won’t always get the same answer! 
We’ll sometimes get / 2  and sometimes 

/ 2 , even if we repeat the experiment with the 
exact same state over and over! The probability of 
getting each is 
 

 

 

2

2

Pr

Pr





  

  
 

 



Note that we can either get + or -, so these must 
sum to 1, which is indeed the case: if  
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since we’ve noted all state vectors are normalized.  
 This lack of determinism is a key feature of 
quantum mechanics. The average value of an 
operator A with eigenvalues Aj and eigenvectors 

j  is therefore: 
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This answers an interesting question: how come 
we measure continuous variables in the 
macroscopic world if all of the quantum variables 
are quantized? First, not all quantum variables 
quantized, as some operators/observables have a 
continuum of eigenvalues. However, when 
repeating measurements we end up averaging over 
all possible results, which yields a quantity that 
behaves macroscopically. 
  
1.6 Dynamics are Described by The 

Schroedinger Equation 

 
Just as Newton’s 2nd law lets us calculate the 
evolution (“dynamics”) of a particle’s position 
(“state”), so does the Schroedinger equation let us 
calculate the dynamics of a quantum system: 
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The function H (“the Hamiltonian”) which is 
simply the system’s energy plays the role of “force”, 

and the state vector   plays the role of “x”, the 
system’s state. The Schroedinger equation is 
difficult to solve analytically and we will not 
attempt to do so in this course except for some 
very simple cases. 
 The Schroedinger equation has a simple formal 
solution if H is time-independent: 
 

   / 0iHtt e   . 

 
The operator   /iHtU t e   is called the 
propagator. The exponential of a matrix (H is a 
matrix!) is defined via its Taylor expansion: 
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In general it’s impossible to calculate the series, but 
there are many approximate numerical methods 
that give excellent results (e.g. MATLAB’s expm 
command, or Mathematica’s MatrixExp function).  
 A word of caution: we are used to 
writing a b a b b ae e e e e    for two complex 
numbers a and b, but this does not necessarily hold 
for matrices. If A, B are matrices then eA, eB are 
matrices and they do not necessarily commute: 

A B B Ae e e e . Furthermore, This immediately also 
makes the first identity suspect: if A B B Ae e e e  
then should we write 
 

A B A Be e e   
 

or 
 

A B B Ae e e  ? 
 

The truth is, neither is in general correct! 
However, if  , 0A B   then the usual rules for 
complex numbers hold as well:  
 

 , 0 A B A B B AA B e e e e e    . 
 



2. The Density Matrix 

 
2.1 The Trace 

 
The trace operation is very important so we’ll 
spend some time on it. It equals the sum of the 
diagonal elements of a matrix. For example, 
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First, it is linear: 
 

     tr tr traA bB a A b B     . 
 

An important property is that its cyclical: 
 

     tr tr trABC BCA CAB  . 
 

This generalizes to any number of matrices. 
Another important property is that: 
 

 Tr     . 

 
I am sure you’ll take great pleasure in deriving 
these identities in your homework. A corollary is: 
 

 tr A A    . 

 
This is simple to prove: A   is a vector. Call it 

 . Then:  
 

   tr trA A          . 

 
2.2 The Density Matrix Describes 

Statistical Ensembles 

 
Consider a spin-1/2 particle which can be in any of 
a set of eigenstates of Sz, ,  . We’ve seen that 

if the system is in a state   then the expected 
value of an observable A is 
 

A A  . 
 
Suppose we have a statistical mixture of “up” and 
“down” in which 50% of the particles are in the up 
state and 50% are in the down state. If we measure 
the expected value of some observable A, we 
should get: 
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This is a simple statistical mean.  Compare this to 
the expected outcome in tossing a 6-sided fair die: 
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So we’re going to use a bar A  to denote an 
ensemble mean, and A  to denote a quantum 

mechanical mean. A  is merely an ensemble 
mean of quantum mechanical means (which 
sounds worse than it is). 

In general, if we have a basis set 1 , , n  , 

and our system can be in j  with probability pj 

(p1+p2+...+pn=1), then the expected value of A is 
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Note that if we define the matrix 
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The matrix  is called the density matrix of the 
system and it represents a statistical ensemble of 
quantum states. It generalizes the concept of a 
quantum mechanical state vector, j . 

 
2.3 A Spin-1/2 Example 

 
Suppose we have a system with half the spins 
pointing up and half pointing down. Then it 
would be represented by the matrix: 
 

   

1 1
2 2

1 01 1
1 0 0 1

0 12 2

1 0 0 01 1

0 0 0 12 2

1

2
I

      

   
    

   
   

    
   



 

 
where I is the identity matrix. Another example: if 
our system was in thermal equilibrium, then the 
pj’s would be the Boltzmann coefficients: 
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For a spin-1/2 in an external field B0 we saw (for 
kT>>E, which is almost always the case): 
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so a more realistic example would be: 
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where  
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is just the z-component of the angular momentum. 
 Finally, let’s see if we can deduce a “general” 
form of the density matrix of a single spin-1/2 
moment using macroscopic parameters. Since  is 
hermitian and tr()=1, we can write it as 
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a is real, b is complex. Assume our system has a 
macroscopic magnetic moment M. If that system 
is described quantum mechanically by a density 
matrix , and its magnetization operator is  
 

ˆˆ M S  
 

then we would expect 
 

 ˆ ˆtr  M M M . 

 
This is in fact three separate equations: 
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These are just enough equations to solve for the 
coefficients a & b: 
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from which 
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2.4 The Liouville Equation 

 
How does  evolve in time? We need to 
differentiate: 
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This is called the Liouville Equation and it 
generalizes the Shroedinger equation.  
 If H is time independent, we can solve the 
Liouville formally: 
 

   / / †0iHt iHtt e e U U     . 
 

The quantity   /iHtU t e   is called the 
propagator. To see this solves the Liouville 
equation, note that d iH

dt U U    and 
differentiate: 
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,

d
U U U U U U

dt
iH iH

U U U U

H t t H H
i i

   

 

  



  

  

  

 

 

 

 

 
so it satisfies the Liouville equation and is a 
solution. 
 
 

2.5 How to Solve Any Problem in 

Quantum Mechanics 

 
So, how do we put all of this QM to work? The 
most general problem in QM can be formulated as 

follows:  
 
This is analogous to the basic problem in classical 
mechanics: given a particle with position and 
velocity at time t=0, calculate its trajectory (using 
F=ma) for all t>0.  
 Here is a recipe that will give  you the answer 
every single time, assuming H is time independent: 
1. Write down the hamiltonian H 
2. Calculate its eigenvalues Ej & eigenvectors 

j , which constitute a basis.  

3. Given an initial density matrix 0 , expand it 
in the basis of H: 

 

0
,

nm n m
n m

     

 
4. We know    / / †0iHt iHtt e e U U     . 

Now,   // miE tiHt
m m mU t e e      

and therefore: 
 

 
 

,

n mi E E t

nm n m
n m

t e   



    

 
Since we know how the j ’s look like and what 

the energies are, this is a full analytical solution to 
the problem. Often, however, this sort of brute 
force approach is not very revealing, nor does it 
supply us with physical intuition, so a great deal of 
QM focuses instead on approximations and trying 
to find more insightful ways of solving problems.   
 

3. Example: A Spin-1/2  

 
3.1 The Density Matrix 

 
For a single spin-1/2 in a magnetic field, the 
hamiltonian is: 

Given a system (either   or a more general 

density matrix ) at time t=0, calculate its time 
evolution for all t>0.  



 
0

0

2
0

2

0 0ˆˆ
00

B

z B

E
H S B

E




 



   
          




 

 
This hamiltonian has two distinct energy levels E  
with the two corresponding states (eigenvectors) 
termed accordingly “up” and “down”: 
 

0

0

2

2

1
,

0

0
,

1

B

B

H

H





 
      

 
 

     
 





 

 
The most general coherent quantum state is 
spanned by the hamiltonian’s eigenfunctions: 
 

a
a b

b


 
      

 
 

 
and the most general density matrix: 
 

1
2

2
1
2

1 2 ˆ
2

x yz

x y z

M iMM

M iM M
I

 

 








 
    
  

M S
 

 


. 

 
The density matrix starts out from thermal 
equilibrium at: 
 

0

0

1
2 40

1
2 4

01

2 2 0

B

kT
z B

kT

B
I S

kT








 
      




 

 
The general   can be written as a linear 
combination of these operators: 
 

ˆ ˆ ˆ, , ,x y zI S S S . 
 

These are called the spin-1/2 product operators 
and constitute a basis for all 22 density matrices 
(prove this!). 
 
3.2 The Effect of a Hard RF Pulse 

 
The time evolution of the density matrix with any 
RF field turned on is determined by the Liouville 
equation, the solution to which is: 
 

   / / †0iHt iHtt e e U U      
 

Any component that is proportional to the identity 
matrix does not evolve in time, since 
 

/ / / /iHt iHt iHt iHte Ie e e I I       
 

(this is not possible for a general  since in general 
for matrices ABBA). Therefore the identity 
matrix is often omitted and one only writes 
 

2

2 ˆ


 M S


 

 
although it should be kept in mind that strictly 
there’s an identity matrix in there.  
 Consider a rotation about the x-axis in the 
rotating frame with no offset. In that frame, the 
effective field is 
 

1 ˆBB x  
 

(assuming the RF field is applied along the x-axis.) 
This means that the hamiltonian is 
 

1 1x xH S B S        S B . 
 

The propagator is 
 

  1/ xi I tiHtU t e e    
 
(where /x xI S  .) We know already from the 
Bloch equation this represents a rotation about the 
x-axis and, if applied to a magnetization vector 
along z for a time 

12t 
 , will rotate it by an angle 

1 2t    to the x-axis (left hand rule!). So 
 

 2 1

0 , ,2 2

2 2ˆ ˆU t

z eq z z eq xM S M S



 


 
 

. 

 
That is: 
 

   
1 10 ,2 2 2

2 ˆ
z eq xU t U t M S 

 


  


 

 
which simplifies to: 

 



1 1
ˆ ˆ/ /ˆ ˆx xiS t iS t

z ye S e S    . 
 

This way we can derive important identities about 
the action of the angular momentum operators on 
the density matrix. A few examples: 
 

 

 

 

 

2

2

2

2

x

x

x

y

R

x x

R

y z

R

z y

R

x z

I I

I I

I I

I I

















 

 

 
 
3.3 Measurement 

 
Our RF coils pick up the transverse magnetization, 
so the FID is proportional to 
 

 
 
 
   

    2 2

ˆ ˆtr

ˆtr

ˆ ˆ2tr

ˆ ˆ ˆ ˆ ˆ2tr

ˆ ˆ2 tr tr

xy xy

xy

xy

x y x x y y z z

x x y y

x y

M M

S

S

S iS M S M S M S

M S M S

M iM



 





 

   

 

 

M S
 

 
as expected! 
 
3.4 The FID 

 
Let’s conclude by showing that, once the spins are 
excited onto the xy plane, we get the FID just as 
we would with the Bloch equation description. 
 

 
/ 2

ˆ //

/ 2

0

0
z

i t
i S tiHt

i t

e
U t e e

e









 
    

 
  

 
and therefore: 
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









    
     

    
  

   
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 

  
 
  

   
   

    
   











 

   ˆ ˆcos sinx yt S t S 

 
This is in perfect accordance with our previous 
observation that Sj’s behave just like vectors under 
rotations. Since the Zeeman hamiltonian merely 
describes a left-handed precession about the z-axis, 
it should come as no surprise that Sx merely seems 
to perform a left handed rotation in “spin operator 
space”. 
 The FID is 
 

 
   
       

       
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 

 

 

 

 
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As expected, we observe the oscillating FID at , 
the Larmor frequency of the spin.  
 
4. N Spin Systems 

 
4.1 Multiple Spins Are Described By 

Direct Product Spaces 

 
 If we have two spins, we need to look at the 
space spanned by the direct product of their 
individual spaces. It’s simpler than it sounds: the 
direct product of two matrices 
 

11 12 11 12

21 22 21 22

,
A A B B

A B
A A B B

   
    
   

 

We see that the “product operators” Ix, Iy, Iz

behave just like the unit vectors ˆ ˆ ˆ, ,x y z  under 
rotations. 



 
is 
 

11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

A B A B
A B

A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

A B A B A B A B

 
   

 
 
 
 
 
 
 

 

 
Often people write just A B AB   out of 
laziness, leaving it up to the reader to understand 
the meaning from the context. 

For two vectors this is: 
 

1 1

1 1 1 2

2 2 2 1

2 2

 
   

 
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 

 
 

                   
 

. 

 
Again, people often just write ,     . 
For example (verify!),  
 

1 0 0 0

0 1 0 0
, , ,

0 0 1 0

0 0 0 1

       
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                  
       
       
       
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For operators, 
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or 
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and 
 

2

1 0 0 0

0 1 0 0ˆ
0 0 1 02

0 0 0 1

zS

 
  
 
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 
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Again, people use such shorthand as 1̂x xS S I  . 
 The Hamiltonian is simply the sum of energies 
of each spin (again, assuming no coupling): 
 
 

1 0 2 0

0

ˆ ˆˆ

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

z zH S B S B 


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Since the sum is diagonal we immediately see the 
Hamiltonian has three energy levels with the 
corresponding eigenfunctions: 
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4.2 Product Operators 

 
We’ve seen that for a single spin-1/2, the density 
matrix can be written as a linear combination of 

ˆ ˆ ˆ, , ,x y zI S S S . For two spin-1/2s, a basis can be 
constructed using 
 



1 1 1

2 1 2 1 2 1 2

2 1 2 1 2 1 2

2 1 2 1 2 1 2

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y z

x x x y x z x

y x y y y z y

z x z y z z z

I S S S

S S S S S S S

S S S S S S S

S S S S S S S

 

 
Basically these guys are all of the possible direct 
products of ˆ ˆ ˆ, , ,x y zI S S S . For three spin-1/2s, 
you’ll need all three-operator direct products of 

ˆ ˆ ˆ, , ,x y zI S S S  (yielding a total of 444=64 basis 
“functions”), and for N spins you’ll need 4N such 
product operators. 
 Some of the operators make immediate sense. 
For example, 1̂yS  describes a system in which the 
1st spin is pointing along the y-axis. But what does 
a product like 1 2

ˆ ˆ
x zS S  “mean”? This is a correlated 

coherent state in which the molecules in the 
system have (on average) the spin of nucleus #1 
pointing along y and the spin of nucleus #2 
pointing along z.  
 
4.3 Spin Subspaces Commute 

 
It is very important to realize that operators in 
different subspaces commute. For example,  
 

 , 0A I I B    
 

for any A, B. This leads to major simplifications as 
we’ll see next. 
 
4.4 RF Pulses and 2-Spin Systems 

 
What happens when we apply an RF pulse to a 2-
spin system? First, it is very important to make a 
distinction between homonuclear  spins and 
heteronuclear spins. For example, two protons in 
the same molecule are homonuclear. A proton and 
a carbon-13 are heteronuclear.  
 Heteronuclear systems tend to have 
independent transmitters, receivers, etc... meaning 
we can apply RF pulses to each independently (or 
even pulse on one and acquire on the other 
simultaneously!). This means we can (for an 
1H-13C system): 
 Pulse on 1H, but not on 13C 
 Pulse on 13C, but not on 1H 
 Pulse on both. 

 Pulse on neither. 
For a homonuclear system there is only one 
transmitter & receiver, so we can either pulse 
simultaneously on both (or acquire simultaneously 
from both), or not pulse at all. We can’t pulse on 
one but not on the other (This excludes so-called 
“soft pulses” which can achieve that and which 
we’ll briefly mention later during the course). Each 
of these scenarios has a different propagator. Some 
examples: 
 
Heteronuclear 1H-13C System 
Action  Propagator 
Apply 90 pulse on 1H, 
apply 180 on 13C 

  1 2
ˆ ˆ/ 2 x xi S i Se e   

Apply 90 on 13C   2
ˆ/ 2 xi Se   

Apply 90 on 1H   1̂/ 2 xi Se   
Do nothing I 
 
Homonuclear 1H-1H System 
Action Propagator 
Apply a 90 pulse    1 2

ˆ ˆ/2 /2x xi S i Se e   
Apply nothing I 
 
How does this affect our density matrix? Let’s say 
that our heteronuclear 1H-13C system is in the 
state: 
 

1 2
ˆ ˆ

x zS S   
 

and we apply 90 pulse on 1H and a 180 on 13C. 

Our propagator is   1 2
ˆ ˆ/ 2 x xi S i Se e   and we can 

calculate the evolution of the system as follows: 
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So what’s really happening here is that each pulse 
(1H, 13C) acts on its own spin and commutes 
with the other spin. Because we know how a single 
spin RF pulse behaves, we can immediately say: 
 

1 2 1 2
ˆ ˆ ˆ ˆ

x z x yS S S S    
 


