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Lectures 1 & 2 were aimed at understanding how 
an NMR spectrum is formed. In this chapter we 
will address several practical issues which we’ve 
glossed over, including interpreting NMR spectra 
and setting acquisition parameters.  
 
1. Understanding NMR 

Spectra 

 
The current course is aimed at an understanding of 
the basic principles of MR, and not at 
understanding and deciphering NMR spectra. 
However, it would be amiss without discussing at 
least the basics of understanding NMR spectra and 
where the variability in chemical shifts come from. 
Being able to “understand” a spectrum – i.e., to 
tell which peak corresponds to which group in a 
molecule – is an artform that results from an 
amalgam of experience and rules-of-thumb. We 
attempt to outline some basic concepts in this 
section. We discuss liquids only. 
 
1.1 “Local” Shielding 

 
This is the “simplest” kind of shielding that results 
from electron currents surrounding the nucleus. 
Here the main factor influencing the amount of 
shift for different groups is the electron density 
around the nucleus. Nearby groups will withdraw 
electrons from a nucleus, an effect known as 
electronegativity. Some groups/atoms do so more 
than others. For example, consider what happens 
to the chemical shift of the protons of a CH3 
group as we attach different atoms to the 
remaining C bond: 
 
 
 
 
 
 

 
X atom (CH3X) Predicted ppm Electronegativity 

H 0.23 2.3 
I 2.16 2.4 

Br 2.68 2.7 
Cl 3.05 2.7 

OH 3.4 O=3.6 
F 4.26 4.2 

 
The higher the electronegativity the more it 
“draws” electrons, the less shielded the methyl H 
nuclei become, the higher their resonance 
frequency (and ppm). 
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Another form of local shielding comes from 
resonance (aka mesomerism). Here, electrons are 
delocalized and withdrawn from an atom. This is a 
non-local effect (although the shielding is local, 
because the effect is directly applied to the 
electrons orbiting the nucleus in question). An 
example of this is a benzene ring in which there are 
two resonant structures which alternate between 
them and cause an electron current in the ring: 
 

 
 
Another example is of vinyl ether: 
 
 
 
 
 
 
Here the electron density at the CH2 group 
increases (it becomes more negative) which then 
leads to a decrease in the field and the ppm of their 
resonance to about 4.1 ppm. Compare this to 
ethene, in which the protons in the CH2 group 
resonate at 5.28 ppm: 
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Note that you cannot ascribe this change to the 
difference in attached groups (H vs. OCH3). If 
anything, the more electronegative OCH3 of vinyl 
ether would drive the resonance frequency up, not 
down! 
 A third effect is hybridization, in which 
orbitals change their shape upon being combined 
in molecules, making electrons move closer or 
farther away from the nucleus and changing their 
effective shielding. 
 
1.2 Nonlocal Shielding 

 
Non isotropic electron distributions can also affect 
the chemical shift of far-away nuclei. Let’s first 
think about an isotropic electron distribution. The 
diamagnetic shielding currents induced by the 
external magnetic field to not change as we rotate 
the molecule because, well, it’s isotropic! However, 
if we think about what happens to an attached 
nucleus – say, a proton – then this proton is 
occasionally shielded and occasionally deshielded: 
 
 
 
 
 
 
 

H shielded   H de-shielded 
 
On average, as the molecule tumbles through the 
liquid, these shielding-deshielding effects will be 
averaged to zero. Thus, it will not be directly 
observable in liquid state, but will contribute to 
relaxation. It will also be visible in solid state.  
 When dealing with non-isotropic current 
distributions, the averaging doesn’t yield a zero 
effect. The simplest example is that of a benzene 
ring. When it is perpendicular to B0, the aromatic 
electrons go around in a circle and create a 
magnetic field, while when it is parallel to B0 no 
such current exists: 
 
 
 
 
 
 
 

When the molecule tumbles now it the average 
shielding is not zero but some non-zero number. 
 The magnitude of ring current effects can be 
quite sizable, around 1 ppm in real life 
applications. It will depend on where the proton is: 
protons above the center of a ring will experience 
shielding and a reduction in ppm. Protons in the 
plane will experience an increase in ppm. The 
effect of the ring can be modeled as a dipole in its 
center, and the shift can be calculated by modeling 
it as a dipole at the ring’s center: 
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In this equation by Pople et. al., B=25 ppm, I the 
ring-current factor which depends on the ring’s 
geometry (e.g. I=1 for a phenyl group),  is the 
angle between the normal to the ring and the 
vector that joins the nucleus to the ring’s center, 
and r is the distance of the nucleus from the ring’s 
center. 
 

2. Setting Up the 

Acquisition 

 
2.1 Tuning and Matching 

 
Ohm’s law states that V=IR, where R is the 
resistance between two points A and B, V the 
voltage, and I the current flowing between them. 
In electronics, voltage and current both have a 
magnitude and a phase: 
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One often recasts them in complex notation as  
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with the understanding that their real part 
represents the actual physical signal. One can then 
generalize Ohm’s law to the form 
 

V=IZ. 
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In this new form, Z is called the impedance and 
can be a complex quantity, as follows: 
 
   Resistor:  Z=R 
   Capacitor:  Z=1(iC) 
   Inductor:  Z=iL 
 
Capacitors and inductors are seen to change the 
phase of the signal because they are imaginary 
quantities. Impedances follow the same addition 
rules as resistors: impedances in series add up, 
while in parallel their inverses add up: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, the impedance of a capacitor and 
resistor in series is 
 

1
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We can then say that the voltage and current obey 
the relation: 
 

1
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Since the impedance is a complex quantity, it will 
affect both the relative magnitude and phase of V 
and I.  

An important theorem in electrical engineering 
states that any circuit made out of passive linear 
components (resistors, capacitors, inductors, etc) 
can be represented using a voltage source and an 
impedance in series. Even active nonlinear 
components such as transistors and diodes, can 
often be approximated using this simple reduction. 

The NMR acquisition apparatus and sample 
can be thought of in terms of electrical 

components: The sample is a resistor and the coil 
is an inductor, and there is additional resistance 
and capacitance in the probe electronics. Thus, it 
can be analyzed in terms of its impedance.  

 

 
 
The probe+sample system is equivalent to an 

LRC circuit – a circuit which has an inductor L, 
capacitor C and resistor R. This system has a 
certain resonant frequency, given by 

 
1
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This means the greatest current will be created 
when the circuit is driven with a sinusoidal voltage  
at a frequency LRC. In our experiment, the voltage 
source is the sample itself – that is, the spins that 
precess and create the FID! We can change LRC to 
match the resonant frequency of the spins by 
adjusting the value of the capacitor C (often 
chosen to be a variable capacitor). You don’t need 
to re-tune often if you’re just doing simple 1H 
spectra, but if you have a broadband probe or 
looking at an unusual frequency range you should 
probably retune.  
One can then consider the coupling between the 
NMR probe and the spectrometer’s electronics. It 
is possible to prove that when the resistive part of 
the impedance of the source (NMR probe + 
sample) equals that of the spectrometer’s 
electronics, which is usually set at 50 , power 
transfer is optimal between the system. Since the 
sample has some unknown a-priori resistance, it is 
necessary to play around with the Probe+Sample 
impedance to match its impedance to 50 , which 
is achieved by attaching a variable capacitor or 
inductor and playing around with its capacitance 
until the impednace is matched.  
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2.2 Setting the Acquisition Time 

 

A typical FID looks like this: 
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How long should you acquire for? On the one 
hand, if you acquire for too long you might end up 
just wasting time and acquiring unnecessary noise. 
If you don’t acquire for long enough you might 
lose out on important signal. The rule of thumb is 
to acquire until your signal decays away, which 
happens around 5T2 ms. This means you should 
have an idea of when the signal decays by running 
a preliminary experiment or knowing something 
about your sample. In the example above, T2 was 
about 15 ms. 
 
2.3 Dwell Time and Acquisition 

Time 

 
The acquired signal is digitized and we record not 
the continuous analog signal, but a set of points 
acquired at equidistant time intervals. This time 
interval is called the dwell time and usually denoted 
dt or t.  
 If one acquires for a time T and a dwell time 
dt, then they will end up with 
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N
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at times 0, dt, 2dt, 3dt, ... Consequently, the 
fourier transform the occurs in the computer is 
called the discrete fourier transform. The MATLAB 
command that carries it out is called fft. 
 The effect of the dwell time is to cause aliasing 
in the spectrum: imagine the spectrum not as a 
linear graph, but as a sheet of paper wrapped 

around a cylinder of length 1/dt. If the cylinder is 
too short, the paper will “wrap” onto itself and will 
make it difficult to read the spectrum. As long as 
1/dt is bigger than the length of the sheet of paper 
you should be ok. This is demonstrated in the next 
example, in which there are four peaks at -110, -
10, 40 and 70 Hz: 
 

-110 -10 40 70 90

Dwell Time: 1.67 ms. SW = 600 Hz

-110 -10 40 70 90

Dwell Time: 3.33 ms. SW = 300 Hz

-110 -10 40 70 90

Dwell Time: 5.00 ms. SW = 200 Hz

Hz  
 
In the third case, dt=5 ms and 1/dt = 200 Hz. The 
peak at -110 then “folds” back onto 90 Hz (90 = -
110+1/dt = -110 + 200). 
 The reason for aliasing can be understood by 
looking at the following example, in which the 
signal cos(2t) is digitized for different offsets  
at a dwell time of 4 ms (total acquisition time 40 
ms):  
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We see that once we progress by 1/dt=0.25 kHz 
from =0, we once again acquire a constant set of 
points, making it impossible for us to distinguish 
between =0 and =0.25 kHz (or =0.5 kHz, 0.75 
kHz, etc ... ). Think of the ADC as a stroboscopic 
party light: we only observe the scene at 
equidistant time points (0, dt, 2dt, 3dt, ...), but 
have no way of knowing what happened between 
those time points. If we tried to view something 
that had a periodicity of the stroboscopic light we 
wouldn’t see anything and mistake it for being 
constant.  
 The range of non aliased frequencies we 
observe is called the spectral width (denoted SW), 
and we have just shown that: 
 

1
SW

dt
 . 

 
Q: Why not sample really really fast (use tiny t) 
and make the SW really big so we don’t have to 
worry about aliasing? 
A: First, all ADCs have a maximal sampling rate, 
which may or may not allow fast sampling. 
Second, most ADCs tend to use really small dwell 
times “behind the scenes”, and actually NMR 
spectrometers tend to oversample (use small ts) 
and then digitally downsample. This is a slightly 
complex process which is done because it makes it 

possible to build simpler analog low pass filters in 
the ADC. We won’t go into the reasons in this 
course (but you can come and ask me if you’re 
curious).  
 
A complementary parameter to the dwell time is 
the total acquisition time, T. If we have N points 
and a dwell time dt, then 
 

T N dt  . 
 

The total acquisition time determines the digital 
resolution: the smallest frequency range one can 
observe in the Fourier transformed spectrum: 
 

1
d

T
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Thus we have an “inverse” relationship between 
the time and frequency domains: 
 

 
 
Where does the relation T=1/d come from? We 
can understand this by examining the FT of a 
complex exponent, f(t)=ei2t. We have seen in the 
previous lecture that 
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and, if we zero out the function outside [-T/2, 
T/2], 
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As T we have    0

ˆ
Tf      . However, 

for a finite T – that is, for a finite acquisition 
time – we obtain a broadening of the signal on the 
order of d=T-1. This means that anything thinner 
than d=T-1 (say, a delta function) will “fatten up” 
and get a width of d=T-1 simply because we 
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acquire for a finite amount of time, T. This can be 
seen in the following example, in which two 
chemical shifts at 0 Hz and 200 Hz were simulated 
with different acquisition times, 512 acquisition 
points and T2=. Ideally for an acquisition time of 
T= we should get a perfect delta function. For 
T< the delta function is replaced with sinc-like 
functions. The real part of the spectrum is 
displayed after 15-fold zero filling of the FID (See 
below for what zero filling is): 
 

Acq. time: 500 ms 

 
Acq. time: 200 ms 

 
 

Acq. time: 50 ms 

 
 

Acq. time: 10 ms 

 
 
In general, the width of each peak behaves as 1/T 
(approximately). 
 The example highlights another interesting 
feature: ringing, which refers to the sinc-like 
wiggles accompanying each peak. This comes 
whenever we truncate our signal, which is the case 

here, since we suddenly stop acquiring after a time 
T. Ringing is avoided if the FID decays smoothly 
to zero, which is the case if T>>T2. Even if T<T2 
the FID can be multiplied by a function that has a 
smooth decay, such as exp(-t/Tsmooth). This will 
make the ringing go away.  
 The digital resolution is not the only factor 
affecting resolution. We have already remarked 
that the width of a Lorentzian peak is determined 
by T2 and given by approximately 1/T2. This 
means that even if we acquire for an infinite 
amount of time (T=), our spectral peaks will still 
be broadened by their natural T2 decay which also 
limits our resolution. So the following should be 
kept in mind: The fastest decay factor of our 
signal determines our ultimate resolution. If T2<T 
then our resolution will be 1/T2. If T<T2 then our 
resolution will be 1/T. If there is some other factor 
causing our signal to decay even faster than T, T2 
then that will determine our peaks’ widths and, 
hence, our resolving power. 
 
 
2.4 Lock 

 
NMR samples are prepared in a solvent. Many of 
these are sold in deuterated forms. For example, 
D2O instead of H2O. This is done for two reasons: 
to reduce the very large signal from the solvent, 
which is often at a much larger concentration than 
the solute and might overpower it; and to provide 
a signal from the deuterium atoms to “lock” the 
spectrometer’s frequency.  
 The spectrometer’s field is not constant over 
time but slowly diminishes due to tiny dissipative 
losses in the superconducting wire. A typical 
magnet might drift by 10-7 Tesla/hour. This might 
not sound like a lot, but in reality it translates to 
 

7 Hz
Hour10 ~ 1 10 T   . 

 
Some NMR experiments are left overnight for 
many hours to increase the SNR or simply because 
they are complicated and take a lot of time (see the 
lecture about 2D NMR). This amounts to drifts 
much larger than the linewidth and can lead to 
severe spectral issues. 
 To overcome this, the signal from the 
deuterium – which is completely independent 
from the hydrogen/carbon/nitrogen/phosphorous 



signals one usually measures in NMR – is acquired 
in rapid pulses and used to track the field’s drift by 
looking at the frequency of the deuterium nuclei of 
the solvent. When the spectrometer “sees” this 
changes, it adjusts the current through a ring 
which creates a homogeneous main field much like 
B0, only not superconducting. This is fine because 
the changes this ring needs to make are very small, 
so we don’t need it to be superconducting. 
Samples without any deuterium cannot “lock” the 
spectrometer’s frequency and this should be kept 
in mind when running long experiments. 
 
2.5 Calibrating the Pulse 

 
As an experimentalist, we can only vary the voltage 
on the transmitter. How does one give a 90 pulse? 
That is, how does one know which voltage 
corresponds to such a pulse? The answer is we need 
to calibrate it.  
 The flip angle  is proportional to the B1 field: 
 

1 pB t   
 

and B1 is proportional to the applied voltage by the 
fundamental equations of electrodynamics, known 
as Maxwell’s equations. We now fix tp at a very 
short duration and start increasing the voltage in 
constant steps, looking at a particular peak in the 
sample. Often this is the solvent which gives off 
the strongest value when unsuppressed. What we’ll 
get is something that looks like this: 
 

 
 
Each peak represents a separate experiment with a 
different B1 (which you don’t know). The peak 
amplitude is modeled by 
 

   1sin sin pA A B t    . 

 
By fitting the maxima of the peaks with this 
function you can easily find both A (which is 

meaningless) and B1, and determine which voltage 
corresponds to it: 
 

 
 
2.6 Averaging and SNR 

 
The signal to noise ratio (SNR) of an NMR 
spectrum is one of its most important aspects, 
particularly because peak strengths are so weak in 
NMR and often get swallowed up in the noise, 
becoming unobservable. This is mainly because 
nuclear paramagnetism is a very weak effect. 
Because we (usually) can’t control the 
paramagnetic polarization, we have to average over 
many measurements. The idea is that each 
measurement has a signal and noise: 
 
 s(t) = sactual(t) + n(t) 
 
where n(t) is some random noise term: 
 
 sactual(t)    n(t)    s(t) 

 
 
Because the Fourier transform is linear, the same 
thing happens in the spectral domain (the noise 
term there will be the FT of the noise term in the 
time domain, which is ... also noise!): 
 
 s()    nspec()   spectrum() 

 
 
The SNR of a given peak is defined as the ratio of 
its amplitude to the standard deviation of the 
noise: 
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Two independent measurements will have exactly 
the same signal sactual(t) but the noise term will be 
different. What happens when we add them 
together? The signal doubles in intensity. What 
happens to the noise? Noise + noise still equals 
noise, but remember these are random signals: 
some of the time the signals will cancel out, some 
of the times they will add constructively, so we 
won’t really get a factor of 2 in the standard 
deviation. What we actually get is a factor of 2 , 
so the SNR grows by 2  as well: 
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In general, for N averages, the SNR will increase 
by a factor of N . This is the principal of signal 
averaging. It’s not very efficient. For example, if we 
repeat the same experiment 100 times, we only get 
10 SNR but have to spend 100 time. 
Unfortunately, it’s often the best we can do.  
 
2.7 Shimming 

 
The quality of the spectrum depends greatly on the 
macroscopic homogeneity of the B0 field. In 
inhomogeneous field will lead to a spatial 
distribution of larmor frequencies (say, for one 
chemical shift): 
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Our spectrum will therefore contain an integral 
over all these peaks: 
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Its Fourier transform will consequently look 
distorted. When is B0 inhomogeneity an issue? 

When the range of frequencies it creates is wider 
than a linewidth, which is about 1 Hz in liquid 
state NMR. Think about what sort of amazing feat 
it is to achieve this level of homogeneity: we 
require that 
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We require the field to be homogeneous to about 1 
part per billion! Think of building a wall 10 cm 
thick that is so straight it does not deviate (say, by 
shear forces) by even 10-9 of its thickness, which is 
1 Å! This is an amazing feat of engineering. While 
today’s modern B0 main coils can produce a field 
that’s homogeneous to about 10-6 over the sample 
size, further improvements are achieved via shims. 
There are two types of shims:  
 Passive shims are small ferromagnetic (e.g. 

iron) elements placed inside the magnet’s bore 
during construction to cancel out spatial 
inhomogeneities. The shims produce spatial 
fields which are specifically engineered to 
cancel out imperfections in the main coil. 

 Active shims are conducting loops of wire 
placed around the sample. Current passed 
through them will generate spatially varying 
magnetic fields. By adjusting the levels of 
current we can build spatial patterns that 
cancel out (some of) the remaining spatial 
inhomogeneity. 

Q: Why do we need active shims? Why aren’t 
passive shims enough? 
A: Very simple. Most samples have bulk atomic 
diamagnetism which will depend on (i) the 
sample’s shape and (ii) composition. This means 
our magnetic field will be distorted by the sample 
itself and we can’t account for it beforehand 
because we don’t know what sort of samples the 
user will want to test! Active shims let the user fix 
those sample-specific effects. 
 Most active shims produce spatial fields which 
approximate linear combinations of spherical 
harmonics Ylm(,). The first few are: 
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Order 
(l) 

Deg. 
(m) 

Polar function Cartesian 
function 

Symbol 

0 0 1 1 Z0 
1 0 rcos z Z 
1 1’ rsincos x X 
1 1 rsinsin y Y 
2 0 r2(3cos2-1) 2z2-(x2+y2) Z2 

2 1 r2 sincossin zx ZX 
2 1’ r2 sincoscos zy ZY 
2 2 r2sin2cos2 x2-y2 X2-Y2 
2 2’ r2 sin2sin2 2xy XY 
3 0 r3(5cos3-3cos) 2z3-3z(x2+y2) Z3 
... ... ... ... ... 

 
There are 2l+1 shims of degree l, which are linear 
combinations of spherical harmonic functions. In 
theory, if we had an infinite number of shims of 
orders l=0 until  we could approximate any 
spatial inhomogeneity. In reality: 
 We only have a limited number of orders. 

NMR spectrometers usually have shims up 
until orders 5 or so, and often not the full set 
(it might be missing degrees). 

 We are limited with the amount of current we 
can pass through the shim coils. 

 Actual shim coils’ fields deviate from the 
perfect spherical harmonics, which 
complicates things a bit. 

Shimming however is a major preliminary part of 
any NMR experiment, in which one adjusts the 
active shims to minimize B0 inhomogeneity. There 
are many ways to assess the level of B0 
inhomogeneity, but on the most basic level we 
adjust the shim currents until our peak looks 
lorentzian and narrow. 
 The effects of different “types” of field 
inhomogeneity are shown below. 
1. A homogeneous B0 field and a perfect 

lorentzian (left: real part of FID; right: real 
part of spectrum): 

 
2. A linear inhomogeneity B0=z: this yields a 

“beating” in the FID and a loss of signal: 

 
3. A quadratic inhomogeneity, B0=z2, will lead 

to an asymmetric spectral lineshape: 

 
 
All types of B0 inhomogeneity lead to loss of SNR 
and spectral resolution, and are extremely 
detrimental to spectroscopy! 
 
2.8 Phase Cycling 

 
Any pulse has a phase as well as an amplitude, 
determining its position in the transverse plane 
and, as a result, the phase of the excited 
magnetization: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above drawings show that the phase of the 
excited magnetization, M, merely satisfies: 
 

M=RF+90. 
 

This opens up some very interesting opportunities 
for improving the final signal. For example, 
consider an ADC which is imperfect and adds a 
DC component to the acquired signal; that is, 
instead of s(t) it gives 
 

 s t   
 

where  is some constant (this was common in the 
early days of NMR; today’s ADCs are much better 
and DC offsets are rarely a problem). By repeating 
the experiment twice, with RF phases RF, 
RF+180, we obtain two signals: 
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By subtracting both measurements we can cancel 
out the DC offset: 
 

s1(t)-s2(t) = 2s(t). 
 

There are more complicated phase cycles we’ll 
meet down the road, but this should give you a 
preliminary idea of the concept. 
  
2.9 Filter Bandwidth 

 
Before the ADC there is a low pass filter (LPF) 
which cuts off high frequencies. Why? Because if it 
didn’t the high frequencies – which contain only 
noise – would alias into the spectrum and increase 
its noise level. The width of this filter is called the 
filter bandwidth. For the types of electronic/white 
noise present in the NMR bands, one can say with 
great precision that 
 

FID noise levels  fbw . 
 

The filter bandwidth is directly related to the 
spectral bandwidth, and in some spectrometers 
they are implicitly set to be equal. 
 
3. Processing NMR Spectra 

 
3.1 Apodization 

 
Apodization means multiplying the FID by a 
decaying envelope before performing the FT: 
 

 
 
Apodization has two effects: it decreases the noise 
and hence increases the SNR, since it “kills off” the 

tail of the FID which is usually more dominated 
by noise than signal; but it also widens the peaks, 
because it makes the signal decay faster, meaning 
in increases the effective T2, reducing spectral 
resolution.  
 
3.2 Zero-filling 

 
Another trick used in NMR post processing is 
known as zero filling: adding zeros to the end of 
the FID. This seemingly innocent extrapolation in 
the time domain action is quite useful, and can be 
shown mathematically to be equivalent to 
interpolation in the frequency domain. Note that 
zero filling does not change the ADC dwell time 
and therefore does not change the spectral width. 
 

 

 
 
In the above example there were two frequencies 
present at -0.5 Hz and 2.5 Hz with T2=125 ms, 
acquisition time of 512 ms and 32 points. We miss 
out on the two frequencies not because of T2 but 
because of the total acquisition time, i.e. our 
digital resolution. Zero filling magically made 
them appear! ZF is no regular linear interpolation 
in which we “connect the dots” but a special type 
of interpolation known as “Dirichlet 
interpolation” which on some mathematical level 
is ideal for NMR.  This magical property increases 
the resolution by up to several percent to several 
tens of percent. We won’t go into the math of why 
this happens, but it’s almost always a good idea to 
zero fill a spectrum to twice its size before applying 
a FT. Zero filling of more than a factor of 2-4 is 
usually meaningless and should be avoided. 
 
3.3 Phasing 

 
Due to hardware constraints, the peaks can have a 
zero or first order phase. A zero-order phase is a 
term of the form:   is t e  . Without it, the FID 
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transforms into absorptive (lorentzian) and 
dispersive parts: 
 

     FTs t A iD    
 

With it, the two parts “mix”: 
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This looks like this: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Luckily, 0th order phase is easy to correct: just 
multiply the spectrum by ie  . The phase  is not 
known a-priori so the correction is usually done 
manually, and terminated when the operator 
deems his real spectrum “looks absorptive”. 
Alternatively, sophisticated algorithms can do a 
pretty good job of automating this correction. 
 First order phases come about due to electronic 
imperfections as well as finiteness of the RF pulses. 
Here, a frequency-dependent phase gets added to 
the peaks. For example, if you have N peaks with 
frequencies j then your FID will be: 
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This seems almost trivial to correct: why not 
multiply the FID by e-i? But wait: what is ? We 
don’t know our frequencies a-priori, and even if 
we did, we can’t “access” each summand and fix it 
independently of the others. When we look at the 
effects of 1st order phase in the frequency domain, 
is will look something like this: 
 
 
 
 
 
 

 
 

 
 
You see the phase at 0 Hz is not affected at all, 
because its frequency is =0 and therefore its 
linear phase is always =0 regardless of . The 
effect becomes more and more pronounced for 
peaks farther away from 0 Hz.  
 Q: Why can’t we fix the linear phase by 
multiplying the spectrum by ei for some ? 
 A: Each peak has a constant phase that 
increases linearly with frequency. This is not the 
same as having a linear phase for the entire 
spectrum. To illustrate this, just look at what 
happens to (the real part of) the spectrum when we 
multiply it by ei: 
 

 
 

Quite horrible! This happens because ei affects 
the entire lineshape and not that lineshape’s 
overall phase! You’re trying to fix a problem that 
looks like this: 
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by doing this: 
 

  ji i
jL e e     

 
where L() is a lorentzian peak.  
 Of course, a real spectrum will have both 0th 
and 1st order phase issues, and good luck telling 
them apart! It takes skill, or a good computerized 
algorithm.  
 
 


