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1. An NMR Primer 

 
1.1 Motivation 

 
Spectroscopy is a field which studies the 
interaction of light with matter. In practice, in 
spectroscopy we apply a field of some 
wavelength(s) to a medium containing some 
material and either (1) monitor how that field is 
altered by the medium, or (2) monitor what signal 
the medium gives off after the field has passed 
through it. 
 Think of whistling as a very simple type of 
spectroscopy: when you shape your mouth and 
pass air through it, a single tone is formed, which 
corresponds to the resonant frequency of the air 
inside your oral cavity. The frequency (pitch) of 
the whistle tells you something about the volume 
of your mouth. A higher pitch corresponds to a 
smaller cavity, much like a shorter string produces 
a higher pitch when struck. Of course, you know 
these things intuitively so they don’t seem 
impressive to you, but these ideas can be translated 
to the microscopic domain. 
 An example will serve to illustrate this idea. We 
can take a sample of ethanol molecule, CH3-CH2-
OH, and apply an infrared (IR) light pulse to it. 
We can detect this pulse after it has passed through 
the medium, and – after a mathematical operation 
called a Fourier transform – get a so-called infrared 
spectrum:  
 

 
 

By examining how the sample affected the IR field 
we can hopefully learn something about ethanol 
itself. To do this, we need to understand the 
underlying physics of the process. For example, it 
is known that IR radiation in the 400-4000 cm-1 
range (2.5-25 m) causes chemical bonds to 
vibrate, and so the different dips in the IR 
spectrum tell us something about the molecule’s 
vibrations; namely, we get direct evidence of the 
vibrations of the OH, CH and CO bonds. Not 
only that: these numbers can be used to study 
these bonds, their strengths, distances and so forth.  
 IR spectroscopy is absorptive in nature: it 
studies how the radiation is absorbed by the 
medium. As the IR pulse moves through the 
medium it causes the bonds to vibrate and as a 
result it loses energy to heat, evident by the dips in 
the IR spectrum. 
 Let’s stick with ethanol, and now look at a 
Raman spectrum: 
 

 
 
A laser pulse is once again sent through the sample 
and examined at the other end. A small percentage 
of the photons will distort the electron cloud of the 
molecule, causing it to vibrate and hence give away 
some of their energy in the process. By examining 
the photons at the other end we can try and say 
something about the vibrational states of the 
molecular bonds.  
 NMR also spits out a spectrum. The spectrum 
will depend on the nucleus being studied. The 
proton spectrum will look a lot like this: 
 



 
 

We will note a few features of interest: 
 The spectrum is made of peaks. 
 There are three proton groups in ethanol, 

CH3, CH2 and OH, and there are three main 
groups of peaks in the spectrum. 

 Each group of peaks contains multiple peaks 
bunched together, except for the leftmost one 
which contains a single peak, called a singlet. 
The other groups have names describing the 
number of peaks in them (triplet, quartet). 

The carbon NMR spectrum will be: 
 

 
 
Here, again, we see two lines which “correspond” 
in some way to the two carbon nuclei in the 
molecule.  

Our goal for the remainder of the chapter will 
be to understand how this spectrum comes about. 
We will address the question of what it is good for 
in a subsequent chapter. 
 
1.2 The Main Field 

 
At the heart of NMR spectroscopy is the 
spectrometer: 

 

 
 

The polarization process is paramagnetic as 
discussed in the previous chapter. The larger B0, 
the greater the polarization and the greater the 
resulting signal, which is why high fields are 
desirable in NMR. 

This large apparatus is based on a very simple 
principle: a ring of current will generate a magnetic 
field perpendicular to the ring’s plane. 
 
 
 
 
 
 
 
We can take a wire and make multiple turns, 
building up a cylindrical structure of stacked rings: 
 
 
 
 
 
 
 
 
One can approximate the field along the center of 
such a solenoid as: 
 

ˆnIB z  
 

where n is the number of turns per unit length, I 
the current and  is the magnetic permeability of 

The sole purpose of the spectrometer is to 
generate a large and very stable and 
homogeneous magnetic field, denoted B0. The 
purpose of this field is to polarize the nuclear 
magnetic moments, creating a macroscopic 
magnetic moment which can then be detected 
using methods we’ll discuss below. 

B 

B



the medium inside the coil. For empty space, 
=0=410-7 NA-2.  
 Let’s do a quick calculation. If we apply 1 turn 
per mm (1000 turns per meter) and use the 
maximum current one can draw from a home 
outlet (say, 16 A), the field created will be 
 

B=0.02 Tesla = 200 Gauss 
  

To contrast, the earth’s average magnetic field is 
about 0.5 Gauss. Today’s NMR magnets can reach 
fields of up to 20 Tesla. They do this by using 
superconducting wires, which can carry enormous 
amounts of current, around 100 A, without 
generating any heat. This enables NMR engineers 
to use very fine wires with many many turns per 
cm to generate the necessary high fields. The 
superconducting wires need to be kept at very low 
temperatures of a few Kelvins, which is achieved 
by submerging them in liquid helium at 4K. The 
modern NMR magnet is actually a very 
sophisticated thermos, designed to keep the 
Helium as cold as possible and even cooling the 
wires to below 4K.  
 A matter of notation: magnet strengths are 
often not stated in Tesla but in MHz. As we’ve 
seen in chapter 1, a magnetic moment placed in a 
magnetic field will precess with a frequency 

0B  . What one often quotes is / 2   for 

protons, for which =242.57 kHz/mT. For 
example, when one speaks of a “500 MHz” NMR 
spectrometer, they mean 
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1.3 The Chemical Shift 

 
Why bother measuring the nuclear magnetic 
moments? After all, we know that a proton in an 
external field B0 will precess at a rate 0=B0 (the 
so-called Larmor precession). Why build an 
expensive apparatus just to reaffirm what we 
already know? 
 The real usefulness of NMR stems from the 
exquisive sensitivity of the nuclear spins to their 
molecular environment through several 
mechanisms. The most prominent mechanism by 
far is termed the chemical shift, and is the reason 
NMR is an indispensible tool in chemistry. 

 We’ve already discussed diamagnetism, in 
which a material  placed in an external constant 
field B0 will generate a field B that opposes and 
diminishes B0. For example, if we place a uniform 
diamagnetic sphere in an external field, the field 
will induce many atomic magnetic moments on 
the sphere’s rim which will create the opposing B 
field: 

 

 

 

 
 
Usually B<<B0, but in extreme cases it can even 
match is, as is the case in super conductors, in 
which the magnetic field of the induced moments 
completely cancels out B0 inside, known as the 
Meissner effect. In general we refer to the creation 
of a diamagnetic field opposing the main field as 
diamagnetic screening. 
 The same effect also happens with microscopic 
“objects” such as the electron cloud orbiting the 
atomic nucleus. The size of the diamagnetic 
screening effect will depending on the electron 
cloud’s spatial distribution. In other words, each 
nuclear magnetic moment in a molecule will feel 
a slightly different magnetic field, and this field 
will tell us something about the electronic 
configuration around the nucleus (i.e. the 
“chemistry”). This is known as the chemical shift 
effect. 
 Returning to ethanol, we can immediately 
understand qualitatively why we have three 
resonance groups in the proton spectrum: the 
protons in each of the groups (CH3, CH2, OH) see 
a different electron cloud around them. It’s also 
obvious, for example that the two protons in CH2 
see the same cloud due to symmetry, and hence 
constitute a single group: 



 
 

 
  
 
This also means the Larmor frequency of one of 
the CH3 protons, for example, is not 0=B0 but 
=B0-B(1)=0-cs. This shift in frequency is 
termed the chemical shift.  
 An interesting and very important property of 
the diamagnetic effect is that it is proportional to 
B0. For example, if we double B0, we will also 
double the amount of induced magnetic moments, 
which will double the diamagnetic screening 
strength. This means that BB0, and we can 
write: cs=B=B0, where  is some small 
dimensionless number. Typically, it is on the order 
of 10-6, meaning the chemical shift is very small. 
Putting it all together, we obtain: 
 

=0-cs=(1-)B0. 
  
 Note the chemical shift doesn’t explain any of 
the splittings of the peaks in the ethanol spectrum. 
These will have to await the next chapter. 
 
1.4 The Isotropic and Anisotropic 

Chemical Shift 

 
It is intuitively clear that the induced magnetic 
moments, and hence the size of the diamagnetic 
effect, will depend on the orientation of the 
molecule with respect to the external field. For 
example, the amount of shielding of the CH3 
protons will be different with these two 
orientations: 
 
 
 
 
 
 
 
In solid state NMR this has significant effects 
which we will address when we discuss at the 

appropriate chapter. In liquids, however, the 
molecules tend to tumble and rotate very rapidly. 
The rotational correlation time of a molecule in 
liquid will depend on its size, for but small 
molecules like ethanol these times are on the order 
of picoseconds (10-12 sec), meaning ethanol’s 
orientation gets randomized in a few picoseconds. 
This also means its chemical shift anisotropy gets 
averaged out and we end up seeing and measuring 
an average value, iso. This is an example of 
motional averaging which makes liquid state 
NMR spectra simple compared to their solid state 
counterparts.  
 

1.5 The Simplest Goal of NMR 

 
At this point we can state our goal: we would like 
to measure the different chemical shifts of the 
molecules in our sample. This will yield important 
information on the chemical environment of the 
molecules in the sample. 

We will assume – mostly correctly – that the 
nuclear spins in different molecules do not talk to 
each other, which is a fairly good assumption due 
to motional averaging. Thus, if we have a tube 
with 1022 molecules of ethanol, we get treat them 
as 1022 identical, individual cases, each yielding the 
same signal. All we need to do is understand the 
spectrum from one freely tumbling ethanol 
molecule. 
 
1.6 The PPM Scale 

 
Referencing: Chemical shifts are not often stated 
with respect to the precession frequency of a 
nucleus in vacuum (B0), but to some reference 
compound. For example, tetramethylsilane (TMS), 
Si(CH3)4 
 

 
  
is a very popular reference compound added to 
chemical samples before observing their NMR 
spectrum. TMS gives off a single sharp peak which 
is very stable and hardly affected by temperature, 
pH, etc ... making it an ideal reference. This means 
that, instead of discussing absolute frequencies, 

B0-B(1) 

B0-B(2)

B0-B(3)

External 
field, B0 

B0 



 
0 cs     
 

we discuss/plot the difference: 
 

 , 0ref cs cs ref ref B           . 

 
The ppm scale:  Since the referenced frequency is 
proportional to B0, our entire spectrum scales with 
B0. For example, if we take a sample with two 
protons having two different frequencies 
(referenced to some reference such as TMS): 
 

1, 2, 
 

and double B0, these frequencies will become 
 

21, 22, 
 
meaning the spectrum will look the same, just 
twice as wide. It then makes sense to try and devise 
a scale which is independent of B0. We define the 
shift in ppm (parts-per-million) of a resonant 
frequency as: 
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For example, when we say that the CH3 protons of 
ethanol resonate at about 1.3 ppm (relative to 
TMS), we mean that: 
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This lets us calculate its resonant frequency at any 
field. Say, at 3 Tesla, 6

010 2 127 HzB     and 
therefore: 
 

3 , 165 HzCH ethanol
TMS   . 
 

So we know that, whatever the frequency of TMS 
is, ethanol’s methyl protons resonate 165 Hz above 
it.  
 

 
 

 
 
2. Excitation 

 
2.1 Why Excite? 

 
We’ve seen that spins precess around a constant 
field. However, our polarized spins are parallel to 
the main field B0 at thermal equilibrium, and 
therefore don’t execute any motion. To cause them 
to precess – and use that to measure their 
precession frequencies, which would then reveal 
their chemical shifts – we need to “tip” them and 
create an angle between them and B0. This is called 
excitation and is the topic of this section. The gist 
of an NMR experiment is:  

1. Excite the spins. 
2. Let them precess and measure their signal 

(somehow) before they return to thermal 
equilibrium. 

 
2.2 The RF Coil 

 
So far we’ve encountered a single coil in the NMR 
setup, responsible for generating B0. To excite the 
spins we will require another coil (or two, actually) 
which will generate a small, time dependent field 
perpendicular to B0. These RF coils wrap around 
the sample: 
 

 
 
Just like the main coils, a current through the RF 
coil will create a magnetic field. The RF coils are 
connected to a signal waveform generator. By 
shaping the current’s shape we can create any 
magnetic field we desire: 
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The two representations are equivalent, with: 

A useful rule (prove it!): At a field of 0B =X 
MHz, a difference of 1 ppm is equal to X Hz. 
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2.3 Exciting the Spins: Lab Frame 

 
The idea of resonance is one of the most basic ones 
in physics. Most systems have a “natural 
frequency” in which they oscillate when taken out 
of equilibrium. For example, a pendulum on a 
string of length l will oscillate with a frequency 

/g l  . When we apply a periodic force to the 
system, the effect of the force will be greatest when 
its period matches the natural frequency of the 
system.  
 Why is this important in NMR? Our RF coils 
can generate very weak fields < mT at most 
compared to the huge static B0 field, because they 
are not superconducting and cannot sustain large 
amounts of current without melting. It would 
seem their effect must then be very negligible: how 
could a weak 1 mT field possibly do anything 
compared to the huge 10 Tesla main field?  If we 
turn it on, it will tip the spins out of resonance, 
but only very negligibly so.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although in theory even a small tipping will get 
the spins to precess, the effect will yield a very 
weak and poor signal. So, can a small RF field tip 
the spins far away from equilibrium? Yes, if we 
apply it on resonance. This is the R in NMR.  
 We’ll prove this in a rigorous manner in a bit, 
but for now I’d like to give a qualitative idea of 
how it’s done. Imagine we turn on a constant RF 

field along x and let the spins precess. This 
precession will occur around the combined RF 
field at a larmor frequency: 
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This means the spins will precess by an angle 2 
with a cycle time of: 
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So, if we wait a time  revT  the spins will end up 
where they started: along B0. The spins will spend 
half their time going towards the xy plane, and half 
their time going back towards the z-axis: 
 
 
 
 
 
 
 
 
 
 
 
 

If we reverse the polarity of the RF field 
midway through after a time   / 2revT , we can 
reverse the direction of the precession and get the 
spins to keep going towards the xy-plane. We’ll 
have to reverse the polarity again after a time 

  / 2revT , then again after another time   / 2revT , 
and so forth until the spin gets to the xy plane: 

 
 
 
 
 
 
 
 
 
 
 

B0 

M 

BRF ~ B0 BRF<<<B0

Total 
field 

At thermal 
equilibrium 

We’d like to have a very 
powerful BRF to get M far away 
from thermal equilibrium ... 

... but in reality it’s 
very small and has 
negligible effect 

The magnetization vector precesses 
towards the xy plane for the first 
half of its trajectory ... 

... and back towards the z-axis 
during the second half 



The spin will end up performing a spiral trajectory 
until it reaches the xy-plane: 

 

 
 
Think of it as a swing: we push it on one side, 

and when it performs half a cycle we push it from 
the other end, then after half a cycle we push it 
from the original end, each time coordinating our 
force with the direction of the swing’s acceleration, 
building it up coherently instead of destroying it.  
 How long will it take the spin to reach the xy-
plane? Each “half revolution” will tilt the spin by 
an angle 
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In a full revolution (i.e. in one single oscillation of 
the RF field), this will get doubled. The number of 
oscillations the RF will have to complete, NRF, is 
determined by: 
 

 half-rev

2total angle 2RFN     
 

which yields: 
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Each such oscillation takes a time  

0

1rev
BT  , so 

the total time until the spin reaches the xy plane is: 
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For example: if 2 10 kHzRFB   , then 
 

 excite 25T s . 
 

So, to sum up our second conclusion: 
 

 
 
It is perhaps surprising that the excitation time is 
independent of B0, and only depends on the size 
of BRF. 
 I won’t blame you if visualizing all of this is 
difficult: it is! This is why we’re going to switch to 
a different frame of reference in the next section, 
which will help us re-derive all the results we got in 
a much easier way. Some things will change a bit 
when we analyze the situation more rigorously, but 
its main ideas outlined here will remain 
unchanged. 
 
2.4 Exciting the Spins: The Rotating 

Frame  

 
In the previous section we analyzed the motion of 
M in response to an oscillating square-wave RF 
field. An actual NMR experiment differs in two 
ways: (1) there will be diamagnetic shielding which 
needs to be taken into account, and (2) the RF 
waveform is not linear but circular, and rotates in 
the xy-plane. Putting these two together, the 
magnetic field during excitation is: 
 

To excite the magnetization to the xy plane, we 
have to apply an oscillating RF field with an 
oscillation frequency given by B0 (i.e., “on 
resonance”), and a duration 
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To properly analyze its effect, we will need to 
transform to a frame that rotates with the same 
frequency as the RF field, rot RF  : 
 
 
 
 
 
 
 
 
 
 
Rotating frames are a bit tricky to handle, so to 
understand how we should approach this let’s take 
an analogy from mechanics. Image the earth going 
around the sun in a circle: 
 
 
 
 
 
 
 
 
 
 
This can be understood by an observer in space the 
following way: the Earth wants to “go forward” 
but gravity pulls it “inward”, curving its path into 
a circle. In effect, the Earth is continuously 
“falling” into the sun, but escaping doom thanks 
to its tangential velocity. All this is all a 
consequence of Newton’s second law, F=ma.  
 Now imagine how things would look to an 
observer standing on the sun and rotating with it. 
Neglecting for the time being the weather on the 
surface, the Earth would appear stationary to such 
an observer:  
 
 
 
 
 
 

 
 
 
If that observer would try to use Newton’s law 
F=ma to understand his world he would fail: 
according to F=Fgravity=ma, earth should be falling 
towards the sun, but it isn’t! The truth is that 
when you transform to a rotating frame you need 
to add a fictitious force. That is, you need to pre-
suppose a force which doesn’t arise out of any 
physical source, called the centripetal force, to 
explain how it is possible for the earth to remain 
stationary: 
 
 
 
 
 
 
 
 
 
 
 
So, in mechanics when you try to understand 
things in a rotating frame you need to do two 
things: 

1. Understand how things in the “real” 
frame would look in the rotating frame 
(e.g., the Earth would remain still). 

2. Add fictitious forces (e.g., the centripetal 
force). 

A similar thing happens when you go to a rotating 
frame in magnetic resonance, rotating with the 
same angular velocity as the RF field: 

1. First, the RF field appears stationary in 
the rotating field which “matches” its 
rotation frequency (i.e. because 

rot RF  ).  
2. Now we need to add the correct fictitious 

force.  
What fictitious force should we add? If we think of 
how the spin would appear in the rotating frame, it 
will appear to precess not with a frequency 

0 0B  , but with a frequency 0 rot  , which 
is also: 
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We see that in the rotating frame the spin behaves 
as if subject to a field 0

rotB 
 , leading us to 

conclude the fictitious field is rot

fictB 
  . Given 

these two realizations, we can jot down the field in 
the effective field which dictates the dynamics of 
the spins in the rotating frame: 
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Sanity check: let’s reproduce the results of the 
previous section by taking the same conditions: 
B=0, 0rot RF    , so 
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The analysis becomes really easy now: the spins 
will precess about the x-axis around the field 

ˆrot RFBB x  at a frequency rot RFB B    . It 
is now clear that the spins will reach the xy-plane 
after a time: 
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and we have re-derived the result of the previous 
section.  

 
2.5 NMR Happens in the Near Field 

 
Let’s dwell for a moment on the notion of RF 
irradiation. The rotating RF field is generated by 
time alternating currents in the RF coils with a 
frequency RF , with 0RF   for on-resonance 
(or near-resonance) irradiation. For a 500 MHz 
NMR spectrometer, 0 2 500 MHzRF     , 
leading to a wavelength of: 

 

0.6 meters
/ 2

c
 

  . 

 
So the wavelength is much bigger than the 
dimensions of our sample, which is a 5 mm tube 
in NMR spectroscopy. This means the spatial scale 
of change of the RF field is about a meter; put 
differently, the RF field doesn’t change (spatially) 
in any appreciable manner over the sample and is 
spatially homogeneous. When  >> size of the 
sample we say the radiation is near field.  
 Contrast this with optics: a green laser will 
have a wavelength of =532 nm, meaning that two 
separate laser beams just a few mm apart (>>, the 
far field) aimed at the same spot will, in general, 
hit the spot with different phases/intensities. This 
is why we can build optical interferometers such as 
the Fabry Perot etalon which gives rise to beautiful 
interference patterns, 
 

 
 
but don’t have any NMR interferometers. In fact, 
had we wanted to build an NMR interferometer, it 
would have to be at least several meters in size! 
(Question: What would you measure with it?) 
 
 



3. Signal Reception 

 
Provided below is a rough sketch of the acquisition 
hardware pipeline: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Faraday’s Law Underlies NMR 

 
Once the nuclear magnetic moments are excited 
onto the xy-plane we turn off the RF field and let 
them precess about the main field at a frequency 

 0B B   . As noted in the first chapter, the 
macroscopic magnetization vector M gives off a 
dipole magnetic field, B: 
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Note that B is proportional to M, the magnitude 
of the macroscopic magnetic moment. The 
rotation of the spins means B will rotate as well 
with the same time dependence: 
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This will induce a time dependent changing 
magnetic flux through the same RF coils we used 
to excite the sample,  

 

 

 

0

4
integrate over surface of loop

t d



   B S
 

 
and by Faraday’s law will generate an 
electromotive force (i.e. voltage) which we can pick 
up: 
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In a nutshell, this is precisely how the NMR signal 
is detected.  
 A single coil most often used in NMR will only 
pick up one component of the magnetization 
vector.  
 
 
 
 
 
 
 
 
 
 
To see this, imagine M as the vector sum of two 
linearly oscillating moments: 
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where =0-cs. The x-moment creates a field 
which rotates in the plane of the coil (xz plane), 
and therefore has no time varying component 
through the coil’s surface, so its time varying flux 
(and induced emf) is zero. Therefore we only need 
to worry about the y-component, for which 
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so,  
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We don’t really care about the actual flux unless 
we’re in the business of designing RF coils (which 
we’re not). The important points here is that if the 
magnetization is sinusoidal, the signal is 
cosinusoidal and proportional to one of the 
components of the magnetization: 
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3.2 The NMR Signal Must Be 

Downconverted Before It Can Be 

Digitized 

 
Once acquired, thesignal gets its frequency 
downconverted, meaning its frequency gets shifted 
down from around the larmor frequency 
(hundreds of MHz) to the audio range (kHz). This 
is done by multiplying each coil’s signal by 
sinusoidal or cosinusoidal signal with a receiver 
frequency rec that is equal to or close to the 
Larmor frequency: 
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The first term oscillates very rapidly at about twice 
the Larmor frequency, +rec, while the second 
oscillates around 0 Hz, -rec. The multiplied 
signals are passed through a low pass filter (LPF) 
which eliminates high frequencies, leaving us with 
just the low ones: 
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The reason for this is that analog-to-digital 
conversion is much easier at lower (~ kHz) 

frequencies than higher (~ 500 MHz) ones: the 
requirements of the converter’s digitization speed 
are much lower and the process becomes much 
cheaper and more exact. 

 
3.3 Quadrature Detection 

 
We’re only picking up one component of the 
magnetization. This poses some problems in NMR 
which we’ll consider in more depth next lecture. 
Briefly, a signal cos(t) can correspond to two 
possible frequencies: . Indeed, both  will give 
rise to the same signal! 
 

 
Mathematically, this comes about because cos(t) 
can be decomposed into the sum of two 
exponentials: 
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This means that the spectrum of cos(t) actually 
has two frequencies in it, . This ambiguity is 
often detrimental and we’d like to only acquire one 
frequency. To do so, we create a copy of the 
original signal and shift it by 90: 
 
 
 
 
 
 
There are multiple “phase shifters” you can buy 
today commercially, and we won’t go into the 
details of how they exactly work. They basically 
add a phase to the input function: 
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with =90 for a 90 phase shifter. 

 
3.4 Analog to Digital Conversion 

 
The original and phase shifted signals are then 
sampled with an analong to digital converter 
(ADC): 
 

 
 

The ADC discretizes the signal by sampling it on a 
regular grid. The horizontal timing between 
samples, t, is called the dwell time, and the 
vertical spacing between samples, is called the 
quantization depth of the ADC.  

Quantization depth is usually measured in bits, 
when n bits means the ADC has 2n levels of detail 
along the vertical axis. For modern ADCs, n=24 
bits so we have 107 levels of detail. This level is so 
fine we rarely have any artifacts that relate to 
quantization in NMR, so we’re going to pretend 
our signal is continuous along the y-axis. 

Modern sampling rates can also be very fast. A 
modern digital recorder will operate at either 48 
kHz or 96 kHz. One of the reasons we down-
convert is to make it easier for the ADC to do its 
job: you need a lot more points to sample a fast 
changing signal compared to a slow changing one, 
and modern NMR ADCs are very similar to audio 
ADCs. This sampling rate will have some effects 
on the signal we’ll discuss next lecture.  

Mathematically, we will model the effect of 
sampling on the signal as 
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The sampled signals – original and phase 
shifted – are combined on the NMR console to a 
single, complex signal: 
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The above discussion assumed we had a single 

precessing magnetic moment at a frequency =0-
cs. We have to keep in mind that a sample will 
have multiple chemical shifts, each with a different 
amplitude proportional to the number of protons 
resonating at that particular chemical shifts. Keep 
in mind the number of protons is proportional to 
both the number of molecules in the sample, and 
the number of protons per molecule. So, for a 
general signal, 
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where M0,k is just the number of protons 
resonating at cs,k. The signal Sj is called the free 
induction decay, abbreviated FID. Why “decay”? 
Because once we include thermal relaxation and 
decoherence effects, the signal will decay to zero 
over time (see Relaxation ahead). 
 
3.5 Complex Magnetization 

 
It is often useful to form the complex transverse 
magnetization: 
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For a rotating magnetization vector in the xy-
plane,  
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this becomes: 
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Thus, the acquired signal is: 
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This is an interesting and very useful results: the 
signal is proportional to a sum over transverse 
magnetizations.  
  
4. Relaxation 

 
4.1 T1 and T2 

 
The Bloch equation describes the dynamics of a 
single magnetic moment in response to a magnetic 
field. What happens when we have a large, 
statistical ensemble of spins? In a “real” 
microscopic environment the spins will be 
constantly exposed to fast fluctuating magnetic 
fields. These fields originate in the fields the 
moments exert upon each other, and they fluctuate 
randomly because the molecules tumble randomly 
due to their thermal motions. We’ll explore these 
ideas in greater detail in a subsequent lecture, but 
an important consequence is that the fluctuating 
random fields lead to relaxation. Relaxation refers 
to two processes that occur in the sample: 
1. Decoherence: the different spins in the 

transverse plane go “out of phase” with each 
other and end up generating signals which 
interfere destructively. This happens over a 
time scale known as T2 and affects spins in the 
xy plane (Mx, My). In “typical” liquid state 
NMR, typical T2 values are in the 10-100 ms 
range, but can go up as high as 1 sec.  

2. Thermal relaxation: Here, the energy 
imparted to the excited spins is distributed 
back into the other – rotational, translational 
and vibrational – degrees of freedom of the 
molecule, and as a consequence the spins 
return to thermal equilibrium. This affects the 
longitudinal component (Mz), and happens 
over a time scale known as T1. In “typical” 
liquid state NMR, T1’s order of magnitude is 
around 1 second. 

These two processes are not physically the same 
and in general T2<T1. The effects of relaxation can 
be included phenomenologically in the Bloch 
equations: 
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To get a feel for what these terms mean, let’s set 
the fields to zero: 
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The first two equations have a simple solution: 
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These describe an exponential decay of the 
magnetization due to the decoherence phenomena. 
After a time t>>T2, 
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 The third equation has a slightly more 
complicated solution: define Y=Mz-M0, so 
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Here, again, the solution is 
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Substituting Mz back, we obtain  
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After a time >> T1,  
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Thus, the magnetization relaxes back to the value 
M0 which is its thermal equilibrium value, as 
determined by our paramagnetic calculation in the 
previous chapter: 
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4.2 Relaxation and the FID 

 
How does the Larmor precession affect the 
relaxation? It doesn’t. If the spins are precessing at 
some frequency , all we need to do it analyze the 
situtation in a frame of reference which rotates at 
the same frequency, in which the spins are 
stationary. That is, a rotating frame within the 
rotating frame. In that frame, the Bloch equations 
are 
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and the magnetization vectors decay exponentially: 
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with  
 

 
0

0 0

0

M

t

 
    
 
 

M . 

 
This means that (returning to the rotating frame), 
 

 
 

2

2

1

/

/
0

/

cos

sin

1

t T

t T

t T

t e

M t e

e











 
 

  
   

M  

 

The signal is: 
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For a single magnetization vector. For an ensemble 
we need to sum as before over all chemical shifts 
(which might have different T2 values!). 
 
 
5. The NMR Spectrum 

 
5.1 The Fourier Transform 

 
The complex signal from a single nucleus having a 
given chemical shift is 
 

  1
0

i ts t s e   
 

It is fairly easy to deduce 1  looking at the signal 
in the time domain. However, what happens if our 
signal has, say, three components? 
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It is exceedingly difficult for humans to deduce the 
is by looking at the signal in the time domain. 
Fortunately, there is a tool that simplifies this, 
known as the Fourier transform (FT). The FT acts 
as a “magic box” which reveals the frequency 
characteristics of a time domain signal s(t) in the 
form of a spectrum. The spectrum is comprised of 
peaks: a peak centered at i tells us s(t) has a 
frequency component ii te  , and the peak’s “size” 
tells us what its coefficient si is.  
 Given a signal s(t), its Fourier transform is 
defined as:  
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Example: if s(t)=1 for t[-T/2, T/2] and 0 
elsewhere (a rectangle), then: 
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The sinc has a main lobe with width 2

T
  . 

This is typical of FTs: the width of the FT is 
usually inversely proportional to the width of the 
original function. Also, 
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regardless of T. If we now take the limit T, the 
sinc function becomes very narrow and tall while 
maintaining its total area. For any function g(), 
we can approximate 
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To get just g(0), we’d have to normalize  ŝ   by 

2. A function f() that looks like a sharp “point” 
at the origin, integrates to one and satisfies 
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delta function. We’ve just shown that (a.)  1
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is a delta function and that (b.) the Fourier 
transform of a constant function (a rectangle with 
T) is a delta function, up to a 2 factor. 
 
5.2 The Fourier Transform of a 

Decaying Exponential 

 
The NMR signal is made up of decaying 
exponentials. The Fourier transform itself is linear, 
meaning that if  
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so we only need to calculate the FT of a single 
summand. This is easily achieved: 
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(the last line is obtained by multiplying and 
dividing by the complex conjugate of the 
denominator and simplifying.) 
 The real part is a Lorentzian function and is 
called the absorptive part of the spectrum. The 
imaginary part is called the dispersive part of the 
spectrum. These names are a legacy from optical 
spectroscopy, from which they were originally 
borrowed. There, the coefficient of refraction in a 
material, n, has a real and imaginary part: the real 
part causes the signal to decay (get absorbed) while 
the imaginary part causes different frequencies to 
progress as different speeds through the material, 
leading to dispersion of the components of the 
incoming wave packet. 


