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1. Basic Spin Physics 
 
1.1 Magnetism 
 
Before talking about magnetic resonance, we need 
to recount a few basic facts about magnetism.  
 Electromagnetism (EM) is the field of study 
that deals with magnetic (B) and electric (E) fields, 
and their interactions with matter. The basic entity 
that creates electric fields is the electric charge. For 
example, the electron has a charge, q, and it creates 

an electric field about it,  2
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ˆq

rE r , where r 

is a vector extending from the electron to the point 
of observation. The electric field, in turn, can act 
on another electron or charged particle by applying 
a force F=qE.  
 

 
 There is, however, no magnetic charge. The 
“elementary unit of magnetism” is the magnetic 
moment, also sometimes called the magnetic 
dipole. It is more complicated than charge because 
it is a vector, meaning it has both magnitude and 
direction. We will ask ourselves three basic 
questions: 
1. What sort of magnetic fields does a magnetic 

moment create? 
2. Where/how do magnetic moments appear in 

nature? 
3. How does an external magnetic field affect the 

magnetic moment (apply force/torque, etc)? 

We begin by answering the first question: the 
magnetic moment creates magnetic  field lines (to 
which B is parallel) which resemble in shape of an 
apple’s core:  

 
 
  
 
 
 
 
 
 
Mathematically, if we have a point magnetic 
moment m at the origin, and if r is a vector 
pointing from the origin to the point of 
observation, then: 
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The magnitude of the generated magnetic field B 
is proportional to the size of the magnetic charge. 
The direction of the magnetic moment determines 
the direction of the field lines. For example, if we 
tilt the moment, we tilt the lines with it: 
 
 
 
 
 
 
 
 
 
 
 

 
The simplest example of a magnetic moment is 

the refrigerator magnet. This, however, is not a 
microscopic moment and its field will often 
deviate from that of an ideal magnetic dipole.  
We’ll soon meet other, much smaller and weaker 
magnetic moments, when we discuss the atomic 
nucleus. 
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Left: a (stationary) electric charge q will create a radial 
electric field about it. Right: a charge q in a constant 
electric field will experience a force F=qE. 



 
 
 
 
 
 
 
 

Your refrigerator magnet 
has a permanent magnetic moment 

 
Another interesting example is the Earth itself, 

which behaves as if it had a giant magnetic 
moment stuck in its core: 

 

 
 
If you take a compass, which is nothing more 

than a magnetized iron needle, having a magnetic 
moment itself, it will align itself along the earth’s 
magnetic field. This illustrates another point of 
interest which we’ll make use of: magnetic 
moments tend to align themselves along the 
magnetic field they are in when in equilibrium, in 
which they minimize the moment’s energy: 

 
E   m B . 

 
Whether or not they actually align is dependent on 
competing interactions, such as their thermal 
energy which tends to randomize them.  

 The phrase “tend to” is quite sloppy, since, as 
we’ll see, it’s the things they do until they align 
themselves that constitute the heart of MR. 
Nevertheless, the fact that moments “want” to 
align themselves to an applied field indicates that: 

 

 
 
Magnetic moments are measured in units of 

Joule/Tesla or (equivalently) in Amperemeter2 (1 
J/T = 1 Am2).  
 
1.2 Magnetic Moments in Nature 
 
Magnetic moments are divided into two groups: 
current-induced and intrinsic.  
 
Current­Induced Moments 
 
Basic electromagnetism tells us that a current 
flowing in a closed loop will give off a magnetic 
field. The loop can be macroscopic, like a wire, or 
microscopic, like an electron orbiting the nucleus. 
Far away from the current loop the field will look 
as if it were being generated by a magnetic dipole. 
If the magnetic loop is assumed to be planar, the 
magnetic dipole will be perpendicular to the loop, 
and have a magnitude given by 
 

m=IA 
 

where I is the current in the loop and A is the area 
enclosed by the loop: 
 
 
 
 
 
 
 
For a general (non-planar) current loop, the 
expression for m is somewhat more complicated, 
but the principle is the same. 
  
Intrinsic Moments 
 
It also appears that several fundamental particles - 
the proton and the electron – carry intrinsic 
magnetic moments. That is, they “give off” a 
magnetic field as if a magnetic dipole were fixed to 
them, without having any current associated with 
them.  

The most energetically favorable position (i.e. 
“minimum energy”) for a magnetic moment in 
an external field is parallel to the field (the 
most energetically unfavorable position is anti-
parallel) 

A 

m 



 
 Electron Neutron Proton 
Charge 
(Coulombs) 

-1.610-19 0 1.610-19 

Mass (kg) 9.110-31 1.610-27 1.610-27 

Magnetic 
moment 
(J/T), 2S 

9.2610-24 -0.9610-26 1.410-26 

Magnetic 
moment (B) 

-1.0 Irrelevant Irrelevant 

Magnetic 
moment (N) 

Irrelevant -1.91 2.79 

Spin, S (in 

units of  ) 

1/2 1/2 1/2 

Gyromagnetic 
ratio,  
(Hz/T) 

2.81010 -2.91107 4.257107 

 
The Bohr  magneton, B, is just a quantity that 
makes it easy to talk about electron magnetism. It’s 
not used often in nuclear magnetism, thought: 
 

24

2
9.27 10

e

e J
B m T

    . 
 

A similar quantity, the nuclear magneton, N, is 
used more often in nuclear magnetism, although 
we won’t be making direct use of it: 
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The phenomenon of intrinsic magnetic moments 
is directly related to another fundamental property 
of these particles called spin, and one speaks of a 
"nuclear spin" or an "electron spin". This is 
intrinsic angular momentum possessed by all 
electrons, protons and neutrons. Semi-classically, 
we can think of the proton or electron as a rotating 
ball of charge. The rotating charge can be thought 
of as loops of current, which give off a magnetic 
moment. In reality this picture is wrong, and you 
should always keep in mind spin is an intrinsic, 
somewhat weird quantum mechanical property; 
for example, the neutron has no charge and yet has 
a spin magnetic moment.  
 The semi-classical picture gets one thing right: 
the angular momentum and magnetic moment of 
the spinning sphere are parallel: 
 

m S . 
 
The constant of proportionality is known as the 
gyromagnetic ratio, and is given in units of  

 

 
Coulomb Hz

kg Tesla
   . 

 
A word of caution about units: some books or 
tables quote  in units of radMHz/T. For 
example, =242.576 radMHz/T for the 
hydrogen nucleus.  Always be mindful of the units 
being used. Remember that, if we multiply  by 
2, we will sometimes need to divide another 
quantity by 2 along the way. A simple example is 
that of the magnetic moment of the proton: 
 

 
(1/ 2)h for proton42.576 MHz/T

       (has 2 )     (no 2 )




  m S . 

 
Equivalently, 
 


 


   1/ 22 42.576 MHz/T
   (no 2 )     (has 2 )




  m S


. 

 
In the second form, I moved the 2 factor from h 
to . The end result is the same, but now we must 
remember to specify the angular momentum in 
units without radians.  
 All electrons have an intrinsic magnetic 
moment, but that is not true for all nuclei, since 
nuclei are made up of smaller more elementary 
units (protons and neutrons) which sometimes 
cancel out. In fact, it is energetically favorable for 
two magnetic moments to cancel out: 
 
The Nuclear Magnetic Moment 
 
The nucleus is made up of protons and neutrons. 
Proton and neutron spins tend to pair up anti-
parallel due to the Pauli exclusion principle, in a 
manner similar to that of the electronic model of 
the atom, where levels fill up from lowest energy 
and up. This is quite surprising when you consider 
how strongly coupled the nucleons are, but it 
works.  
 This reasoning works fairly well. For example, 
it predicts that nuclei  with  an  equal  number  of 
protons and neutrons should have 0 nuclear spin. 
This works well for 12C, 16O, but not for 2H, as 
shown by the next table:  
 



 
 
It also predicts nuclei with an “extra” neutron or 
proton should have spin-½. This works for 13C, 
1H, 31P, 19F, but not for 17O. The breakdown of 
the pairing occurs before some nuclei have 
asymmetric nuclear charge distributions. These 
lead in some cases to favorable energy 
configurations with non-paired nucleons. Nuclei 
with asymmetric charge distribution are known as 
quadrupolar nuclei, and we’ll discuss them later 
on in the course. 
 
Atomic Magnetism 
 
When one speaks of atomic magnetism one usually 
refers to magnetism created by the electrons, which 
is larger and therefore more dominant than the 
nuclear term. This is a combination of intrinsic 
electronic magnetism (spin) and induced electronic 
magnet moments in external fields.  
 
1.3 Field-Moment Interactions 
 
A microscopic (point-like) magnetic moment m in 
a magnetic field B will be affected in two ways: it 
will feel a torque, 
 

=mB, 
 
and will also feel a force: 
 

  x y zm m m
x y z

  
    

  

B B B
F m B .  

 
A corollary to this is that a magnetic moment in a 
spatially constant magnetic field will not feel any 
force on it (but will feel a torque). If you’ve ever 
heard of the Stern-Gerlarch experiment conducted 
in the 1920s, then you already know this at least 
partially: there, the experimentalists employed a 
non-uniform magnetic field between two magnetic 
poles, and fired a beam of electrons through it 

(actually, it was silver atoms having an unpaired 
electron, but the effect was the same); electrons 
having their spin pointing “up” felt a force in one 
direction, and electrons having their spin pointing 
“down” felt a force in the opposite direction, 
effectively splitting the beam into two groups and 
proving electron spin was quantized: 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 In magnetic resonance almost all of the fields 
we’ll encounter will be spatially uniform; even 
non-spatially uniform ones will have a negligible 
effect since the force they’ll exert will be negligible 
(both m and B will be small). However, the 
torque will turn out to be important, and will lead 
to an important vectorial equation of motion 
called the Bloch Equation.  
 To derive the Bloch Equation (BE), we note 
that for both intrinsic and induced magnetic 
moments, the moment is proportional to the 
angular momentum: 
 

m=L. 
 

Differentiating, and making use of the fact that the 
derivative of the angular momentum equals the 
torque, 
 

d d

dt dt
     

m L
τ m B  

The Bloch Equation 
 

This is, perhaps, one of the most important 
equations in magnetic resonance, and we will make 
great use of it in subsequent chapters. 
 

Electron Beam Detection 
screen 

N 

S 

In the Stern-Gerlach experiment, a nonuniform field between two 
magnetic poles deflected “up” spins in one direction and “down” 
spins in the opposite direction with a force   F m B . 



1.4 Larmor Precession 
 
Solving the Bloch Equation (BE) involves solving a 
set of three first order, linear, coupled, ordinary 
differential equations. Given m(t=0), the BE allows 
us to calculate m(t) for any time t.  
 Luckily, we can “solve” the BE geometrically 
without resorting to differential equations. “dot”-
ing both sides by m, 
 

 
d

dt
   

m
m m m B , 

 
and using the identities 
 

   
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we obtain 
 

 
 

2

2 0
d d

dt dt
     

m m
m B m m . 

 
This means the square of the length of M does not 
change with time; this also means that the size of 
M doesn't change with time. So all that happens to 
M, our magnetic moment, is that it changes its 
direction, not length. To find out exactly how that 
direction changes, write ˆMM M , where M̂  is a 
unit vector pointing in the direction of M. M, the 

magnitude of M, is constant, so ˆMM M
 , and:    

 
ˆ ˆM MBsin     M M M B n
 . 

 
where  is the angle between M and B and n̂  is a 
unit vector pointing in the plane perpendicular to 
both M and B.  Thus, if we assumed M and B to 
be contained in this sheet of paper, n̂  would be 
pointing out of the page according to the right 
hand rule (i.e., towards you, the reader): 

 
 
Since the magnitude of M is fixed, its tip can only 
move on a "sphere", the radius of which is |M|. 
Furthermore, the projection of M on B is fixed, 
because this projection, equal to ˆM B , is 
independent of time: 
 

 ˆd ˆd dˆ
dt dt dt


   

M B M B
B M   ˆ  M B B . 

 
The last term on the right is zero because MB is 
perpendicular to B, so their dot product is zero. 
Thus, M is actually constrained to move on a circle 
about B, as shown on the figure to the left: 
 

 
 
 
We next argue the angular rate of this precession is 
constant. Looking at the figure to the right, which 
shows the motion from a "top-down" perspective 
(looking down at the field vector B), we can see 
the motion of the projection of M on the plane 
perpendicular to B. From simple vector algebra, 
the projection's size is ˆ| |M B , and, from 
trigonometry, we have: 
 

 ˆ| | sin d | | dt   M B M B . 
 
Approximating sin(d)d, and dividing by 

ˆ| |M B , we obtain: 
 

M 

B 

 

n points out 
of the page 

ˆM B  

ˆM B  



d
B

dt


 . 

 
Our conclusion is, therefore: the vector M rotates 
about an axis defined by B, with an angular velocity 
given by =B. This sort of motion is called a 
precession. Remember this idea: it will be central to 
understanding a lot of the subsequent ideas. 
 As a corollary, if we place a magnetic moment 
in a strong, constant external magnetic field, B0, it 
will precess around it with an angular frequency 
 

0L B  . 
 

This frequency is called the Larmor frequency.  
 
1.5 How SPins “Talk” 
 
Magnetic moments create magnetic fields, as 
pointed out in the introduction, so two spins 
close-by will affect each other. This is called a 
dipolar interaction. Thus, different nuclei “talk” to 
each other, as do the electron and nucleus. In 
physics, we say they are coupled  by the dipolar 
interaction, which is one of the most important 
and pervasive type of coupling in NMR. 
 We will encounter other types of coupling as 
we progress throughout the course. It will turn out 
that in many cases we can ignore such couplings 
because they average out, for example due to the 
thermal motion of the spins or through some other 
mechanism. This is called motional  narrowing. 
Why narrowing? When molecules are static the 
effect of complex coupling to their spin neighbors 
manifests itself as a broadening of their spectral 
line. Once the molecules are tumbling fast and the 
interactions average out, these lines usually become 
much narrower and their lifetime increases 
dramatically. For example, typical NMR dipolar 
linewidths in solids can reach tens of kHz, while in 
liquid they are as narrow as 1 Hz. 
 
1.6 Some Pitfalls 
 
A few words of caution:  
1. It is important to stress that intrinsic magnetic 

moments live in their own “space”. For 
example, if you take a proton and rotate it in 
space, the direction of its intrinsic magnetic 
moment will not change. This is very strange, 

yet true! It’s also unlike induced magnetic 
moments, for which a change in orientation of 
the current loop will change the direction of 
the induced magnetic moment. The only way 
to change the orientation of an intrinsic 
moment is to apply a magnetic field to it. 

2. The above expressions for the field created by 
a magnetic moment assumes it’s static. The 
expression remains true even when the 
moment changes, as long as we’re in the “near 
field”. How near is that? If the moment has 
some periodic time dependence m(t) with 
some frequency , then it will have an 
associated wavelength =c/. The near field 
approximation holds when our distance is 
smaller than . This will be the case for 
almost all of our discussions, but it’s worth 
keeping in mind. When we go too far away 
we need to start worrying about radiation 
fields, which will be negligible in our 
discussions. For example, for a typical 11 
Tesla NMR spectrometer, 500 MHz and 
consequently 0.6 meters, much larger than 
the dimensions of the spectrometer or the 
sample. 

 
1.7 The Quantum Nature of Spin 
 
Spin is a quantum mechanical entity. Electrons, 
protons and neutrons have spin S=½, but some  
nuclei have spin that is 1, 1½, 2, ... For example, 
the oxygen 17O isotope’s nucleus has a spin of 
S=2½, and deuterium (2H) has a spin of S=1.  
 Being quantum mechanical, a spin with 
magnitude S in a constant magnetic field B0 can 
only assume 2S+1 discrete values for its energy, 
given by: 
 

0 , , 1, ,nE n B n S S S      . 
 
Since spin is a quantum mechanical property, so is 
the magnetic moment. You might have heard that 
“electron/nuclear spin can only be up or down”. 
This seems to go against what the idea of spin 
precession which in fact only happens when the 
magnetic moment is not aligned with the magnetic 
field. Furthermore, spectroscopy books abound 
with drawings such as this, in which external 
irradiation induces observable transitions between 
discretized (quantum) levels in an ensemble of, say, 



spin-½ atoms (we’ll always be talking about 
ensembles):  
 
 
 
 
 
 
What the above drawing represents is absorption, 
in which a photon having an energy that matches 
the difference in energy levels is absorbed by the 
system and a transition occurs. After a short 
amount of time the system will perform 
spontaneous emission. If we measure the emitted 
energy as a function of the frequency  of the 
photons, we will obtain a “dip” when h=(E2-E1): 
 
 
 
 
 
 
 
 
    
 
 
 
The problem with this picture is that it is 
incomplete. It only portrays what happens to the 
system incoherently, while a great deal of 
NMR/EPR phenomena is coherent, such as 
precession. In precession, the magnetization 
precesses around the external field B0 and therefore 
its energy E=-mB0 is constant (just draw the 
vectors and you’ll see the projection of m on B 
remains constant). This means there can’t be any 
motion between the energy levels, since that would 
change the energy of the system. However, if we 
were to record a signal from a precessing spin we 
would see oscillations in the signal. Since things 
can’t move around in the energy level diagram, we 
can’t explain any oscillatory motion using it. 
 The full quantum mechanical description, with 
Hamiltonians and Schroedinger’s time dependent 
equation, fully accounts for the phenomenon of 
precession as well as all other phenomena. I 
therefore suggest that you treat the above picture 
with the utmost caution. When is it applicable? 

When we deal with incoherent phenomena, such as 
the thermodynamics of the spin system. 
 
 
2. Bulk Magnetism 
 
2.1 Types of Magnetism 
 
A magnetic material is one which interacts with an 
external magnetic field. Almost all materials in 
nature are magnetic, although the degree varies 
tremendously. The source of this magnetism stems 
from the interaction of the atoms with the external 
field. The atom has three sources of magnetism: 
1. The intrinsic nuclear magnetic moment, 

resulting from the intrinsic nuclear spin. 
2. The intrinsic electron magnetic moment, 

resulting from the intrinsic electron spin. 
3. The magnetic moment induced by the orbital 

motion of the electrons around the nucleus. 
These interact with an external field in several 
interesting ways, which we will cover next. In 
general, if we apply an external, constant, magnetic 
field B0, we will tend to magnetize most materials.  
 
2.2 Paramagnetism 
 
Paramagnetism is the easiest to understand. The 
energy of a magnetic moment m in an external 
field B is 
 

E   m B . 
 

This means that, if m is anti-parallel to B the 
energy is highest and if m is parallel to B the 
energy is lowest. 
 Imagine a collection of non-interacting 
magnetic moments, free to rotate. In the absence 
of any external field and at a finite temperature, 
they will orient themselves in all directions 
randomly due to thermal fluctuations: 
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In the above illustration each “dot” is an idealized 
molecule, and each “arrow” is, say, the nuclear (or 
electronic) spin magnetic moment.  

 The bulk magnetization M of the volume V is 
defined as the (vector!) sum over all elements mi in 
the volume: 

 

1

N

i

i

M m . 

 
In the above example, M=0 because the spins 
cancel out each other: 

 

 
 
 

 
Upon the application of an external field, the 

spins tend to align along the field – although 
thermal motion will prevent them from doing so 
completely. A “snapshot” of the spins in the 
presence of an external field might look like this: 
 
 
 
 
 
 
 
 
 
 
This is a result of the system trying to minimize 
the energy of the spins (at thermal equilibrium). 
This is offset by the spins’ thermal energy, which 
tends to disorient them. The degree of 
macroscopic orientation will be determined by the 
relative size of the magnetic energy (mB) and the 
thermal energy (kT). For nuclear and electronic 
spins, mB<<kT so the orientation is small. 
 Any system that is comprised of permanent 
magnetic moments will display some degree of 
paramagnetism. Nuclear paramagnetism is very 
weak and cannot be observed without using NMR 

under practical conditions. Electronic 
paramagnetism only occurs in paramagnetic 
substances – i.e., those with an unpaired electron. 
For example: oxygen (O2), in either gas or liquid 
form. Electronic paramagnetism is stronger than 
nuclear paramagnetism simply because e>>n. 
We now calculate the macroscopic magnetic 
moment per unit volume created by placing N 
non-interacting nuclei or electrons (with some 
gyromagnetic ratio ) in an external, constant field 
B0. As noted above, the quantum mechanical 
picture is valid here and we will use it. 
 The macroscopic magnetic moment is a 
statistical concept. The whole of statistical physics 
rests on the following Boltzmann hypothesis: at 
thermal equilibrium, the probability of the system 
being in a state with energy E is: 
 

  1 /Pr E kT
Z

E e  
 

where Z is a constant number independent of the 
energy or kT, given by: 
 

1 // ... nE kTE kTZ e e   , 
 
where the system has N states having energies 
E1,…,EN. The probability of being in state i is: 
 

  1 /Pr iE kT
Z

i e  
 

Note that our definition of Z implies that:  
 

     1 2 1Pr Pr ... Pr N     
 

or 
 

11 1 1// ... NE kTE kT
Z Z
e e    . 

 
This is the only point in our lectures where we’ll 
use the quantum-mechanical nature of spin. 
Quantum mechanics tells us a spin S in a field B0 
has 2S+1 energy levels: 
 

0 1nE n B n S S S     , , , , . 
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We now ask: what is the average magnetic moment 
of (one) such spin at thermal equilibrium? Our 
previous discussion of paramagnetism implies 

0x ym m   (where B0 is taken to point along 

the z-axis). For the z-component, 
 

     0

S S
n Bn

z n n Z kT
n S n S

m m E


 

     Pr exp

. 
 
If we knew that, then for N non-interacting spins 
at equilibrium, 
 

ˆzN m  M z , 
 

which would be our equilibrium magnetic 
moment. So we really just need to compute <mz>. 
Our assumption of non-interacting spins is a bit 
suspect, since the nuclear spins “talk” via dipolar 
coupling, but one can prove using quantum 
mechanics this holds even in the presence of 
dipolar and other interactions.  
 The expression for 

zm  can be simplified 
considerably if we remember that, for a<<1:  
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In our case, at room temperature (homework!),  
 

 0 1 for all 
n B

n S S
kT


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
, , , 

 
so we can simplify: 
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Using the algebraic identity  
 

  2 1
3 1 2 1

S

n S

n S S S


    

 
yields: 

 

     2 2
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1
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 


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   
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and, for N spins, 
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 You will show in the homework that, for a 1 
cm3 drop of water, the bulk nuclear magnetic 
moment of the hydrogen (H) nuclei is: 
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Note this has units of energy per unit field. You 
can think of it as the amount of energy you create 
when you put the water in a field of such and such 
Tesla. It’s quite small! 
 
2.3 Diamagnetism 
 
Diamagnetism is a quantum mechanical 
phenomenon, in which materials shield themselves 
from an external magnetic field. The amount of 
shielding varies: superconductors, which display 
perfect diamagnetism, completely shield their 
insides from external fields (known as the 
Meissner  effect). Most ordinary materials, 
however, display much weaker shielding. Water, 
for example, shields only about 0.001% of the 
applied magnetic field (10-5). 
 Although quantum mechanical in nature, a 
sloppy classical explanation can be given. Faraday’s 
law states that any change in the flux of the 
magnetic field through a current loop will oppose 
that current by applying a force that will slow the 
electrons down. If we think of the electrons 
orbiting the nuclei in a material as small current 
loops, we can predict changing the magnetic flux 
through them by putting them in an external field 
will cause them to generate magnetization which 
will oppose the field and reduce it. We will not 
pursue these notions further here. 
  
 



 
2.4 Ferromagnetism 
 
Ferromagnetism arises because of strong couplings 
between permanent electronic spin magnetic 
moments. It persists even in the absence of an 
external magnetic field and is pretty much the only 
type of magnetism strong enough to be detected in 
our everyday lives. You’re probably most familiar 
with it from your refrigerator magnets from your 
favorite pizza delivery. 
Ferromagnetism is the spontaneous alignment of 
electron spins in materials on a macroscopic scale. 
This is “unnatural” in the sense that magnetic 
moments are at their lowest energy when their are 
anti-parallel, not parallel. As you know, systems 
tend to minimize their energies, so we must ask: 
what trumps the electronic spin coupling energy? 
The answer is electrostatic energy. In magnetic 
solids, electron spins are about 2  Å apart, with a 
dipolar energy of ~ 10-4 eV, while electrostatic 
energy is ~ 0.1 eV, i.e. much much larger. The 
particular mechanism is, again, quantum 
mechanical and we will not delve into it. We will 
not deal with ferromagnetism in this course, nor 
with its many variations (ferrimagnetism, etc). 
 
2.5 Magnitude of Effects 
 
The general picture you should keep in mind is: 
 
 Nuclear diamgnetism  
  << Nuclear paramagnetism  
  << Electronic diagmagnetism 
  << Electronic paramagnetism 
  << Electronic ferromagnetism 
 
1. Nuclear diagmagnetism, which occurs when 

currents are induced in the nuclear charge 
cloud in an external field, is so small that it is 
only observed in the most extreme conditions 
and has no effect in NMR or, indeed, most of 
physics.  

2. Nuclear paramagnetism due to nuclear spin is 
present in nuclei that have a magnetic 
moment and gives rise to the NMR 
phenomena.  

3. Electronic diamagnetism is present in all 
materials.  

4. Electronic paramagnetism is only observable 
in paramagnetic materials that have unpaired 

electron spins. For example, in O2, or in free 
radicals. 

 

 
The source of O2 paramagnetism 

is its two unpaired electrons 
 
5. Ferromagnetism is only present in several 

special materials such as iron, and then only in 
bulk.  

 
Q: If nuclear paramagnetism is so weak compared 
to electronic diamagnetism, how can we observe it?  
A: It is the resonance  phenomena that makes 
NMR observable. NMR nuclei resonates at very 
particular ranges of frequencies not inhabited by 
any other transitions, making them easy (well, not 
that easy ... ) to selectively excite and detect. 


